
W
hite Paper

 Tunneling with
Secure Shell (SSH)

4848 tramway ridge dr. ne
suite 101
albuquerque, nm 87111

505 - 332 -5700

www.vandyke.com

Tunneling with Secure Shell

Remote access to network resources is increasingly a business requirement, but external
network threats must be neutralized. A Secure Shell (SSH) capability called port forwarding
allows nonsecure TCP/IP data to be tunneled across public and private networks through a
secure, encrypted connection. The benefits of port forwarding are illustrated by a series of
concrete examples. VanDyke Software's clients and servers provide an end-to-end tunneling
solution to secure client/server applications, which may serve as a lightweight alternative to a
Virtual Private Network (VPN).

With today’s increasingly mobile and distributed workforce, providing remote access to travelers and
teleworkers is no longer a “nice to have” option. In many corporations, remote access to business
applications has become mission critical. At the same time, Internet access is now cheap, fast, and readily
available. Leveraging the Internet to extend the local area network (LAN), provide real-time
communications, and immediate file transfer and sharing is a scalable, cost-effective solution for corporate
network remote access.

However, Internet-based remote access also adds significant risk. Sensitive data can be intercepted,
modified, or replayed anywhere between remote workers and the corporate firewall. Broadcast access
technologies like cable and wireless are especially vulnerable. Whenever a computer is connected to the
Internet, it becomes a potential target for intruders. "Always on" broadband greatly increases this exposure
by giving intruders a fixed target to attack repeatedly over time. Unless appropriate measures are taken,
allowing remote access over the Internet can compromise usernames, passwords, proprietary data, traveler
laptops, teleworker PCs – even the corporate network itself.

Secure Shell (often referred to as SSH) can help to neutralize these threats and make the most of secure
Internet-based remote access. This standard protocol employs authentication and encryption to ensure the
privacy and integrity of data exchanged between clients and servers. To learn more about Secure Shell
protocols, authentication methods, and cryptography, refer to our Secure Shell Overview.

Secure Shell can tunnel data from any TCP application with a predefined listening port. Commonly known
as “port forwarding”, Secure Shell tunneling makes it easy to secure applications that would otherwise
send unprotected traffic across public networks. Application messages relayed from one end of a Secure
Shell connection to the other are protected by the cryptographic measures negotiated for that connection.
Because several applications can be multiplexed over a single Secure Shell connection, firewall and router
filters can be tightened to just one inbound port: the Secure Shell port (22).

The VanDyke Software® VShell® server and SecureCRT® client enable Secure Shell tunneling on
Windows®, macOS, and Linux. Cross-platform tunneling is made possible by compliance to the SSH
protocol. For the full list of platforms supported by VShell and SecureCRT visit www.vandyke.com.

This paper shows how VanDyke’s VShell server and SecureCRT provide a comprehensive, end-to-end
solution to secure client server applications. This paper:

• Examines threats addressed by tunneling over the public Internet or a company Intranet

• Explains how Secure Shell port forwarding, authentication, and access control features work

• Illustrates common applications like email, file sharing, and screen sharing as they are tunneled over
residential broadband and WiFi networks

• Considers security implications and where tunneling is best used.

Tunneling with Secure Shell Page 1 Copyright © 2006 VanDyke Software, Inc.

Note: IEEE 802.11 standards have been changed since this article was written in 2006. However, the
details regarding tunneling are still accurate.

https://www.vandyke.com/solutions/ssh_overview/index.html
https://www.vandyke.com

Tunneling over the Internet
Conference attendees at public PCs. Travelers using a hotel or airport wireless LAN. Day extenders
logging back into work at night. Teleworkers conducting business from home. All of these workers can
increase business efficiency by leveraging the public Internet to stay connected. But what are the risks?

Consider a teleworker using the Internet to access email (Figure 1). When the worker’s client sends mail,
messages are relayed to an SMTP server. When the client reads mail, message headers and bodies are
downloaded from a POP or IMAP server. Anyone anywhere in this path through the Internet can use a
sniffer to capture not only cleartext message bodies, but also email addresses, usernames, and passwords.

MailClient MailSvrMailSvr:smtp (25)
MailSvr:pop (110)
MailSvr:imap (143)

Sniffers can capture user name, password, MailServer IP, e-mail headers and
bodies. Man-in-the-Middle attacks can modify, replay or insert forged messages,

pretending to be MailClient or MailSvr.

Attackers can scan MailSvr, launching SPAM and DoS
attacks, fingerprinting OS and server software,

exploiting common vulnerabilities

Figure 1: Typical Remote Access Security Risks

Armed with this stolen data, a passive attacker can replay original or modified messages, even send them
to other destinations. By actively masquerading as a legitimate email client or server, a “man in the
middle” (MitM) attacker can intercept and drop messages, or insert new forged messages.

Mail-specific security measures like PGP and S/MIME encrypt and digitally sign message bodies, but
leave cleartext message headers. Furthermore, they do nothing to protect the mail server from attack. Mail
servers listening to well-known SMTP, POP, and IMAP ports are easily discovered by port scans. Hackers
can use an open server to relay spam or tie up the server with denial-of-service (DoS) attacks. By
“fingerprinting” the server, they can exploit known vulnerabilities in the server’s operating system or email
software.

Leaving this mission-critical resource wide open to Internet access is clearly unwise. Tunneling with
Secure Shell can help by eliminating open ports, blocking unauthorized users, and ensuring the privacy and
integrity of all SMTP, POP, and IMAP traffic exchanged between mail clients and servers.

Tunneling over the Intranet
This section primarily applies to WiFi networks that use WEP encryption.

In the past, companies tended to think about “us” and “them,” using firewalls to establish a secure
perimeter between untrusted outsiders and trusted insiders. This view is increasingly giving way to layered
perimeters that enforce more granular security at workgroup, system, and user levels. These policies are
commonly implemented with operating system access controls – for example, file and printer sharing
privileges extended in a Windows® domain, based on login authentication through the Primary Domain
Controller.

However, authentication and access control alone are insufficient. Intranet client/server applications that
exchange sensitive data – for example, a payroll system – must be protected from insider abuse. Ethernet

Tunneling with Secure Shell Page 2 Copyright © 2006 VanDyke Software, Inc.

LANs are a broadcast medium. Any PC on the LAN can capture traffic passively without detection. Using
readily available hacker tools, insiders can easily perform MitM attacks on cleartext LAN traffic,
modifying and inserting packets.

Companies that trust Ethernet LANs need to reexamine this policy when adding wireless LANs (WLANs).
WLAN access points are often incorrectly deployed behind the corporate firewall, treating all stations on
the WLAN as trusted. Doing so is a blanket invitation to intruders. WLANs based on IEEE 802.11b WiFi
broadcast radio signals hundreds of feet in every direction - even beyond the physical premises.
Furthermore, WiFi shared key authentication and Wired Equivalent Privacy (WEP) encryption often go
unused because they are difficult to administer and have serious flaws.

As a result, visitors in the lobby or a “war driver” in the parking lot can easily use freeware like
NetStumbler or AirSnort to discover a WLAN. By recording packets with WEPCrack, hackers can break
WEP keys and decipher WLAN traffic. At that point, the WLAN becomes vulnerable to the same Ethernet
LAN attacks previously discussed. If the wireless access point is inside the firewall, nothing stands
between the intruder and the corporate network.

Tunneling with Secure Shell can protect corporate Intranet traffic by defeating WLAN exploits like
AirSnort, NetStumbler, and WEPCrack, as well as passive eavesdropping and active MitM attacks that can
be performed on any unprotected LAN. Furthermore, combining Secure Shell with proper placement of
the wireless access point and a single access rule on the corporate firewall can prevent would-be intruders
from penetrating the corporate network.

Tunneling To Shared Resources
Today, many companies share networked resources. File shares on UNIX servers are mounted on remote
systems using the Network File System (NFS) and SAMBA protocols. Databases like Microsoft Access
and SQL Server interface with ODBC drivers to answer queries issued by ODBC clients. Users remotely
access Concurrent Versioning System (CVS) source code repositories using terminal emulators and GUI
front-ends like WinCVS.

Each shared resource is a business asset that must be protected from Denial of Service (DoS) attacks, loss,
malicious modification, and unauthorized access. OS security measures – Windows and *NIX file system
read/write privileges, usernames, and passwords – control access. However, they do nothing to preserve
data privacy and integrity when shares are accessed remotely.

A common example is the corporate teleworker with cable modem Internet access. A teleworker that uses
the built-in Client for Microsoft Networks to share files between home and office PCs unwittingly exposes
these shares to every neighbor on the same cable passing. Because cable is an “always on” technology,
would-be attackers have plenty of time to perform a dictionary attack, discovering share user names and
passwords. Thus armed, the attacker can break into shares and servers on the corporate network that are
accessible with the same credentials.

Another resource shared or accessed remotely is the home or office desktop. Screen sharing can be
accomplished with remote control software like TeamViewer, GoToMyPC, Windows Quick Assist,
Microsoft Remote Desktop client, and RDP (Terminal Services). Unauthorized remote control has long
been a security concern for enterprise administrators. Because these solutions are free/inexpensive and
easy to deploy, workers install them for convenience without first addressing the inherent risk to their
computers and the network.

Secure Shell tunneling can provide strong uniform authentication, access control, and privacy for shared
files and desktops. Instead of leaving RDP or VNC ports open for exploit, tunneling multiplexes these
nonsecure streams onto a single Secure Shell session. User credentials can be checked and access granted
at the one place completely under the enterprise administrator’s control: the Secure Shell server.

Tunneling with Secure Shell Page 3 Copyright © 2006 VanDyke Software, Inc.

How Secure Shell Tunneling Works
Application streams are tunneled over Secure Shell by forwarding individual TCP ports. In this paper,
we focus on local port forwarding: tunnels initiated by the Secure Shell client. This direction is far more
common than remote port forwarding: tunnels initiated by the Secure Shell server (see Appendix A).

When a local port is forwarded, SecureCRT (the Secure Shell client) listens to a specified TCP port on the
local host. VShell (the Secure Shell server) opens a TCP connection to the remote host where the server
application is actually running. By convention:

• The localhost refers to the application client's host; remotehost refers to the application server's host.
Typically, if localhost is not specified, it defaults to the SecureCRT host. If remotehost is not
specified, it defaults to the VShell host.

• The localport refers to the port that the application client sends to and SecureCRT listens to. The
remoteport refers to the port that VShell sends to and the application server listens to. In most cases,
the localport can be any arbitrary, unused port on the localhost. The remoteport must be the IANA-
assigned "well-known" listening port for the application being tunneled.

To use the port forward, the client application must be reconfigured to connect to localhost:localport
instead of remotehost:remoteport. Packets sent by the client to localhost:localport are intercepted by
SecureCRT or another SSH client, encrypted, and tunneled through the Secure Shell connection to VShell
or another SSH server. On receipt, VShell decrypts these packets, relaying them as cleartext through the
TCP connection to the server at remotehost:remoteport. Local port-forwarding for e-mail is illustrated in
Figure 2.

SecureCRT M ailS vr

sm tp (25)
pop (110)
im ap (143)

VShell M ailS vr:sm tp (25)
M ailS vr:pop (110)
M ailS vr:im ap (143)

V S hell:ssh (22)

M ailC lien t

SM TP , P O P , and IM A P a re m u ltip lexed over secure S S H
connection. E ncryption prevents sn iffing and insertion , H M A C

prevents m odifica tion, sequencing prevents rep lay, m utua l
au thentica tion w ith know n public keys p revents M itM attacks.

R elies on perim eter security to
pro tec t LA N tra ffic and M ailS vr

Loca l R em ote
25 M ailS vr:25
110 M ailS vr:110
143 M ailS vr:143

SecureCRTSecureCRT M ailS vrM ailS vr

sm tp (25)
pop (110)
im ap (143)

VShellVShell M ailS vr:sm tp (25)
M ailS vr:pop (110)
M ailS vr:im ap (143)

V S hell:ssh (22) V S hell:ssh (22)

M ailC lien t

SM TP , P O P , and IM A P a re m u ltip lexed over secure S S H
connection. E ncryption prevents sn iffing and insertion , H M A C

prevents m odifica tion, sequencing prevents rep lay, m utua l
au thentica tion w ith know n public keys p revents M itM attacks.

R elies on perim eter security to
pro tec t LA N tra ffic and M ailS vr

Loca l R em ote
25 M ailS vr:25
110 M ailS vr:110
143 M ailS vr:143

Figure 2: Local Port Forwarding

Traffic in transit between SecureCRT and VShell is cryptographically protected. However, traffic between
VShell and the remote host is not. Typically, VShell is located inside the network perimeter, behind a
firewall. The firewall is configured to permit Secure Shell, but not the tunneled application protocols (in
this example, SMTP, POP, and IMAP). In essence, this configuration relies on the firewall to protect
cleartext traffic and inside servers on the trusted LAN.

When the LAN cannot be trusted or Intranet servers are at a premium, VShell can run on the same
machine as the server application (see Figure 3). In this case, there is no need to specify a remote host in
the port forward – SecureCRT and VShell interact with client/server applications on each local host.
Application packets are protected end-to-end; cleartext is never sent over the network.

Tunneling with Secure Shell Page 4 Copyright © 2006 VanDyke Software, Inc.

sm tp (25)
pop (110)
im ap (143)

M ailC lien t M a ilS vr

S M T P , P O P , and IM A P are m ultip lexed over secure
S S H connection from M ailC lien t to M a ilS vr, p rovid ing

end-to -end confiden tia lity, in tegrity, and au thentica tion .

SecureCRT

V S he ll:ssh (22)

VShell

Loca l R em ote
25 25
110 110
143 143

sm tp (25)
pop (110)
im ap (143)

sm tp (25)
pop (110)
im ap (143)

M ailC lien t M a ilS vr

S M T P , P O P , and IM A P are m ultip lexed over secure
S S H connection from M ailC lien t to M a ilS vr, p rovid ing

end-to -end confiden tia lity, in tegrity, and au thentica tion .

SecureCRTSecureCRT

V S he ll:ssh (22) V S he ll:ssh (22)

VShellVShell

Loca l R em ote
25 25
110 110
143 143

sm tp (25)
pop (110)
im ap (143)

Figure 3: Local Port Forwarding to Application on VShell Server

Local port forwarding is appropriate when SecureCRT is running on the same PC as the client application,
initiating outbound TCP connections to the server application. Occasionally, users need to accept TCP
connections initiated in the reverse direction by an application on the Secure Shell server-side. This can be
accomplished with remote port forwarding, described in Appendix A.

These examples illustrate the broad power and flexibility of Secure Shell tunneling. But it is also important
to bear in mind:

• Secure Shell forwards individual TCP connections, but not port ranges. Multi-connection
applications like FTP that use ephemeral ports do not lend themselves well to port forwarding. To
transfer files securely over Secure Shell, it is better to use SFTP or SCP protocols, supported by
VanDyke VShell server, SecureFX® file transfer client, and the SecureCRT VCP utility.

• Although conceptually possible, standard Secure Shell does not forward UDP datagram services.
However, RPC-based UDP protocols like NFS can be tunneled over Secure Shell using freely
available extensions like SNFS.

Authentication And Access Control
In each of these examples, a perimeter firewall protects VShell. Leaving the Secure Shell port open on the
firewall effectively delegates control over tunneled applications to VShell. Doing so creates a single,
integrated point of control over remote user authentication, resource access rights, and tunneled
applications.

Before any tunneling can occur, the SecureCRT user is authenticated by VShell, combining strong two-
factor and public-key methods with Windows workgroups, computers, and user accounts. It also enforces
authentication retry and timeout limits.

VShell filters can be created to allow or deny Secure Shell connections from individual IPs, hosts, subnets,
or entire domains. Windows users and groups can be given access to local or remote port forwarding
without granting command shell or SFTP privileges. Forwarded hosts and ports can be controlled at more
granular levels by creating filters that allow or deny forwarding to IPs, hosts, subnets, domains. For
example, forwarding can be allowed to/from *.corp.com, for any port or selected ports.

Port forward mappings are actually defined by each Secure Shell client. When a Secure Shell connection is
established, VShell accepts or rejects the requested port forwards, based on the authenticated user’s
privileges and port forward filters. By default, SecureCRT allows port forwarding to and from the
localhost, but these client-side Access Control Lists (ACLs) can also be customized.

Tunneling with Secure Shell Page 5 Copyright © 2006 VanDyke Software, Inc.

To more fully appreciate how port forwarding is configured, where authentication and encryption occur,
and the threats addressed by these measures, let’s take a closer look at some common applications that can
be tunneled over Secure Shell.

Secure Email For Travelers And Teleworkers
Travelers who access email from a hotel or conference center and teleworkers accessing email from home
over residential broadband need to secure POP and SMTP. Failing to do so, workers can inadvertently
disclose sensitive and confidential data, including user names, passwords, message text, and attachments.
Legitimate messages can be recorded, modified, and replayed to others, with consequences ranging from
embarrassing to disastrous. Tunneling email is an easy way to ensure the privacy and integrity of all mail
sent and received by authenticated workers through company POP, IMAP and SMTP servers.

To tunnel email, each worker configures a SecureCRT or other Secure Shell client with a local port
forward; mapping ports on the localhost to the well-known ports listened to by mail servers. Figure 4
illustrates this, expanding on the local port forwarding configuration described in Figure 2.

ISP.netInternet
Corp.com

S endM ail
L inux

E xchange
W in32

E udora
S ecureC R T

W in32

E lm
O penS S H

Linux

O utlook
S ecureC R T

W in32

V S hell
W in32

C able

D ia l

D ia l

P O P
S M TP

P O P
S M TP
via T 1

S S H E ncryp ted
C leartext

Loca l R em ote
2025 m ail.isp .net:25
2110 m ail.isp .net:110
3025 m ail.corp .com :25
3110 m ail.corp .com :110

A uthentica ted by
key on sm art card

N o tam pering,
sn iffing , sess ion

h ijack ing

ISP.netISP.netInternetInternet
Corp.comCorp.com

S endM ail
L inux

S endM ail
L inux

E xchange
W in32

E xchange
W in32

E udora
S ecureC R T

W in32

E udora
S ecureC R T

W in32

E udora
S ecureC R T

W in32

E lm
O penS S H

Linux

E lm
O penS S H

Linux

E lm
O penS S H

Linux

O utlook
S ecureC R T

W in32

O utlook
S ecureC R T

W in32

O utlook
S ecureC R T

W in32

V S hell
W in32
V S hell
W in32

C able

D ia l

D ia l

P O P
S M TP

P O P
S M TP
via T 1

S S H E ncryp ted
C leartext
S S H E ncryp ted
C leartext

Loca l R em ote
2025 m ail.isp .net:25
2110 m ail.isp .net:110
3025 m ail.corp .com :25
3110 m ail.corp .com :110

A uthentica ted by
key on sm art card

N o tam pering,
sn iffing , sess ion

h ijack ing

Figure 4: Secure Email for Travelers, Teleworkers

Two alternatives are illustrated here. An external SendMail server that is located at this company’s ISP is
reached through arbitrary local ports 2025 and 2110. An internal Exchange server within the corporate
network is reached through local ports 3025 and 3110. In both cases, mail traffic is protected on the public
Internet, but forwarded as cleartext to the mail server. This prevents eavesdropping, modification, and
session hijacking as e-mail passes through the public Internet. Only authenticated users can gain access to
these mail servers (in this example, key pairs stored securely on smart cards). Users should know VShell’s
host public key in advance to be confident that they are reaching an authentic destination.

Secure Wireless Access To Corporate LANs
Figure 5 expands on a scenario described earlier in this paper: securing WLAN traffic destined for intranet
servers on the corporate LAN. Employees using WiFi-enabled laptops in a conference room, cafeteria, or
other public space can increase business efficiency by accessing their company’s internal network
resources. To prevent sniffing by AirSnort or WEPCrack, each laptop uses SecureCRT to forward ports on
the localhost to ports 80 (HTTP), 443 (SSL), and 119 (NNTP – News) listened to by these servers.

Tunneling with Secure Shell Page 6 Copyright © 2006 VanDyke Software, Inc.

WiFi LAN Corp.com

IIS
W in32

B row ser
S ecureC R T

W in32

802.11b
W ire less

H TTP

S S H E ncryp ted
C leartext

A uthentica ted by
C ertifica tes or

P ub lic K eys

Tools like A irS nort,
W E P C rack cannot
sn iff W iF i payload

N ew s
W in32

Loca l R em ote
3080 w ebm ail.corp .com :80
3443 w ebm ail.corp .com :443
4080 intranet.corp .com :80
4443 intranet.corp .com :443
119 new s.corp .com :119

B row ser
S ecureC R T

W inX P

A ccess
P o in t

IM a il
W in32

N N TP

V S hell
W in32

WiFi LANWiFi LAN Corp.comCorp.com

IIS
W in32

IIS
W in32

B row ser
S ecureC R T

W in32

B row ser
S ecureC R T

W in32

B row ser
S ecureC R T

W in32

802.11b
W ire less

H TTP

S S H E ncryp ted
C leartext
S S H E ncryp ted
C leartext

A uthentica ted by
C ertifica tes or

P ub lic K eys

Tools like A irS nort,
W E P C rack cannot
sn iff W iF i payload

N ew s
W in32
N ew s
W in32

Loca l R em ote
3080 w ebm ail.corp .com :80
3443 w ebm ail.corp .com :443
4080 intranet.corp .com :80
4443 intranet.corp .com :443
119 new s.corp .com :119

B row ser
S ecureC R T

W inX P

B row ser
S ecureC R T

W inX P

B row ser
S ecureC R T

W inX P

A ccess
P o in t

A ccess
P o in t

IM a il
W in32
IM ail

W in32

N N TP

V S hell
W in32
V S hell
W in32

Figure 5: Secure Wireless Access to Corporate LANs

An IMail server with browser-based mail access is reached with the URL http://localhost:3080. An IIS
server is reached with the URL http://localhost:4080. In this example, different local ports are assigned to
forward the same application to different remote hosts. Because we have just one NNTP server, we can
simply map local port 119 to remote port 119. As the user navigates these server’s web pages, only URLs
relative to forwarded hosts (webmail.corp.com and intranet.corp.com) will be accessible.

Since HTTP can be encrypted with SSL (443), why tunnel this over Secure Shell? In this example, only
users with known public keys (including those extracted from laptop certificates) may access these Intranet
servers. The firewall between the 802.11b Wireless Access Point (WAP) and VShell protects the corporate
LAN from the WLAN. Therefore, the only wireless traffic that can penetrate this LAN are authenticated,
authorized applications tunneled over Secure Shell. On the other hand, simply opening 443 on this firewall
would give any application a free ride into the LAN through this port, reaching any destination without
authentication. Finally, multiplexing applications over Secure Shell reduces the total number of TCP
connections, optimizing firewall performance.

Secure VNC Screen Sharing
VNC stands for Virtual Network Computing. VNC is a remote display system which allows you to view a
computing desktop environment not only on the machine where it is running, but from anywhere on the
Internet and on a wide variety of operating systems. Figure 6 illustrates secure VNC screen sharing,
implemented through SecureCRT local and remote port-forwards. This traveler uses a VNC viewer on his
laptop to remotely control his desktop back at the office. To do so, he creates a local port-forward,
mapping port 5900 on the localhost to 5900 on the remote desktop running VNC.

Internet Corp.com
V N C V iew er
S ecureC R T

W in32 D ia l 5900

S S H E ncryp ted
C leartext

A uthen tica ted by
S ecurID

S ing le po in t o f con tro l
over screen sharing

N o sn iffing,
tam pering,
h ijack ing

V S hell
W in32

Local R em ote
5900 V N C :5900

V N C
A ny O S

InternetInternet Corp.comCorp.com
V N C V iew er
S ecureC R T

W in32

V N C V iew er
S ecureC R T

W in32

V N C V iew er
S ecureC R T

W in32 D ia l 5900

S S H E ncryp ted
C leartext
S S H E ncryp ted
C leartext

A uthen tica ted by
S ecurID

S ing le po in t o f con tro l
over screen sharing

N o sn iffing,
tam pering,
h ijack ing

V S hell
W in32
V S hell
W in32

Local R em ote
5900 V N C :5900

V N C
A ny O S

V N C
A ny O S

Figure 6: Secure VPN Screen Sharing

Tunneling with Secure Shell Page 7 Copyright © 2006 VanDyke Software, Inc.

Although there are many programs that enable screen sharing, VNC is convenient because it runs on
multiple platforms: Windows, Linux, UNIX, and Mac. Because VNC provides only weak logon password
authentication and no encryption, tunneling VNC over Secure Shell is critical. Using Secure Shell
products like SecureCRT and VShell give the network administrator granular control over remote screen
sharing. Workers can be strongly authenticated with public keys, certificates, or two-factor authentication
methods like SecurID. VShell filters control which desktops can be accessed through VNC ports, and
which workers have permission to do so. The firewall can block VNC ports, while allowing Secure Shell
to reach the VShell server. The VShell server acts as a single point of control over VNC access to this
corporate network.

Security Implications
In addition to those benefits already discussed, tunneling over encrypted Secure Shell protects against IP
spoofing (attackers masquerading as legitimate hosts by using a known IP address), DNS spoofing (forged
DNS records that trick clients into connecting to an attacker’s own server), and IP source routing (a method
used by hackers to pretend that arriving packets originate from elsewhere).

No security measure – including Secure Shell tunneling protects against every possible attack. As these
examples illustrate, end-to-end security involves not just protecting data in transit, but system security at
the tunnel endpoints (SecureCRT and VShell), firewalls, and on any trusted server receiving forwarded
cleartext. For this reason, locking down the Secure Shell server platform is essential. If a hacker penetrates
a misconfigured firewall, then exploits a weak administrator password to log onto the Secure Shell server,
secure tunneling cannot prevent application data from falling into the wrong hands.

When outfitting travelers, teleworkers, or partners with Secure Shell clients, document “best practices” that
must be used. For example, most Secure Shell clients let the user accept and save the server’s host public
key on first access. This may be convenient, but doing so blindly is wrong. SecureCRT displays the host
key “fingerprint.” Users should be instructed to visually verify this string before accepting any unknown
host key. Alternatively, supply users with host keys in advance, instructing them never to accept an
unknown host key.

Permitting encrypted Secure Shell tunnels through the corporate firewall means that the firewall can no
longer inspect the forwarded application data. Each company must assess the benefits and risks of Secure
Shell tunneling. As discussed previously, the firewall is delegating responsibility to the Secure Shell
server. If implemented correctly, this has its advantages. Content inspection products – especially e-mail
and web anti-virus scanners – can be deployed on the Secure Shell server, application server, and/or client.
If content inspection at the firewall is mandated by company security policy, the Secure Shell server can
also be placed on a firewall DMZ or sandwiched between two firewalls.

Conclusion
Compared to other link, network, and application security measures like IPsec, WEP, and PGP, installing
and configuring Secure Shell is relatively quick and easy. By deploying VShell and SecureCRT,
companies create a comprehensive general-purpose tunneling platform that can be used to implement a
wide variety of security policies, ensuring the privacy, authenticity, and integrity of many different
applications. This paper illustrates several common business applications, but the possibilities are endless.
Anyone using a client to reach a single TCP port on a single remote server should seriously consider
tunneling this application over Secure Shell.

Tunneling with Secure Shell Page 8 Copyright © 2006 VanDyke Software, Inc.

Appendix A: Remote Port Forwarding
Remote port forwarding may be used if there is a need for applications to connect, through the Secure Shell
server, to an application that resides on the Secure Shell client-side.

When a remote port is forwarded, SecureCRT (the Secure Shell client) requests that VShell (the Secure
Shell server) listen to an arbitrary, unused TCP port on the Secure Shell server. When a connection is
requested to this port on the Secure Shell server, the Secure Shell server opens another port to the Secure
Shell client to relay the forwarded traffic. Packets received at remotehost:remoteport are intercepted by the
Secure Shell server and re-directed to the Secure Shell client at localhost:localport.

te lne t (23)

A gent

te lne t (65023)

M anager

Te lne t adm in is tra tion occurs over S S H connection , p rovid ing
end-to -end confidentia lity, in tegrity, and au thentica tion .

S ecureC R T in itia tes the S S H connection , ask ing V S he ll to
“rem ote fo rw ard” port 65023 to 23.

SecureCRT

V S hell:ssh (22)

VShell

Loca l R em ote
23 65023

te lne t (23)

A gent

te lne t (65023)

M anager

Te lne t adm in is tra tion occurs over S S H connection , p rovid ing
end-to -end confidentia lity, in tegrity, and au thentica tion .

S ecureC R T in itia tes the S S H connection , ask ing V S he ll to
“rem ote fo rw ard” port 65023 to 23.

SecureCRTSecureCRT

V S hell:ssh (22) V S he ll:ssh (22)

VShellVShell

Loca l R em ote
23 65023

Figure 7: Remote Port Forwarding

In this case, forwarded traffic can be seen as “flowing” between some independent client (the application
that accesses the reverse-forwarded port), the Secure Shell server (remotehost), the Secure Shell client
(localhost), and a destination server (the application that consumes the reverse-forwarded data). Figure
7 illustrates remote port forwarding to a Telnet server on the localhost.

With remote port forwarding, the server application is typically co-located with SecureCRT. The server
can also run on a trusted host near SecureCRT – for example, a SOHO LAN gateway that is remotely
administered through Telnet. When configuring remote port-forwards, unique listening ports must be
assigned to each SecureCRT. In Figure 7, VShell can forward Telnet sessions to several different
SecureCRTs – provided that each uses a different remote port.

Tunneling with Secure Shell Page 9 Copyright © 2006 VanDyke Software, Inc.

	Tunneling with Secure Shell
	Tunneling over the Internet
	Tunneling over the Intranet
	Tunneling To Shared Resources
	How Secure Shell Tunneling Works
	Authentication And Access Control
	Secure E-Mail For Travelers And Teleworkers
	Secure Wireless Access To Corporate LANs
	Secure VNC Screen Sharing
	Security Implications
	Conclusion
	Appendix A: Remote Port-forwarding

