

4848 tramway ridge dr. ne
suite 101
albuquerque, nm 87111

505 - 332 - 5700

www.vandyke.com

Scripting Essentials:
A Guide to Using
VBScript in SecureCRT

U
ser's G

u
id

e

VanDyke Software and SecureCRT are a registered trademarks of VanDyke Software, Inc.
All other trademarks or registered trademarks are the property of their respective owners.

Copyright 2009-2010 VanDyke Software, Inc. All rights reserved.

AA GGuuiiddee ttoo UUssiinngg VVBBSSccrriipptt iinn SSeeccuurreeCCRRTT
Introduction 1

How This Document is Organized 1
Conventions Used in This Document 1
SecureCRT’s Scripting Objects/API Reference 2

Chapter 1: Creating Scripts 4
1.1 Starting from Scratch with a New Script 4
1.2 Recording a Script 5
1.3 Modifying an Existing Example Script 9

Chapter 2: Launching Scripts 11
2.1 Manual Script Execution 11
2.2 Automated Script Execution 20

Chapter 3: Connecting to Remote Machines 24
3.1 Connecting with a Pre-configured Session 24
3.2 Connecting in an “Ad Hoc” Fashion 25
3.3 Connecting in Tabs 26

 Solution: Open a Group of Sessions in Tabs 28
3.4 Disconnecting Active Connections 29

 Solution: Automatically Close an Inactive Connection (Auto Disconnect) 30
3.5 Connecting to a List of Remote Machines Within a Loop 31
3.6 Handling Connection Failures Within a Script 31

Chapter 4: Reading Data from Remote Machines 35
4.1 Accessing Selected Text on the Screen 35

 Solution: Performing a Web Search with Selected Text 35
4.2 Waiting for Specific Data to Arrive 36

 Solution: Receive Notification when “Error-Indicating” Text Appears 38
4.3 Capturing Data from a Remote Machine 46

Chapter 5: Sending Data to Remote Machines 54
5.1 Sending Plain Text 54

 Solution: Repeat a Command with Variable Input from User 54
5.2 Sending Control Codes 56
5.3 Simulating Keyboard Events 57

 Solution: Add "no" to Each Selected Line and Send to Remote 59

Chapter 6: Getting Information from the End User 62
6.1 Prompting for Simple Responses: Yes, No, OK, Cancel, etc. 62
6.2 Prompting for Arbitrary Text Input 69

 Solution: Clone Current Tab Multiple Times 72
6.3 Building Custom Dialogs or Forms 77

 Solution: Create a Custom Username and Password Input Dialog 81

Chapter 7: Logging, Reading, and Writing Files 83
7.1 Logging with SecureCRT's Session Object 83
7.2 Reading Data from Files Using the FileSystemObject 87

 Solution: Read Data from Separate Files: Hosts, Commands 90
7.3 Writing Data to Files Using the FileSystemObject 95

 Solution: Save Selected Text to a CSV File 97

 Solution: Import Data from File to SecureCRT Sessions 100

Chapter 8: Working with the Windows Clipboard 113
8.1 Retrieving Data Stored in the Clipboard 113
8.2 Storing Data to the Clipboard 113

 Solution: Auto-Save Command Results to the Clipboard 113
8.3 Changing Paste "Speed" 115

 Solution: “Slow Paste” (Line Delay) 115

 Solution: “Slow Paste” (Echo Delay) 116

 Solution: Vary Paste Speed Based on Clipboard Length 117
8.4 Setting the Clipboard Text Format (Encoding) 118

A Guide to Using VBScript in SecureCRT 1 © 2009-2010 VanDyke Software, Inc.

IInnttrroodduucctt iioonn
A SecureCRT user once wrote to the VanDyke Software technical support department in reply to some
answers to scripting questions saying:

“This will alleviate a lot my daily boring and annoying job. My dream is to be able to
use scripts even at a higher level, …activate macros pertaining to the various
windows to automate almost completely my job.”

While your job may not be boring or annoying, freeing up time from the repetitive widget-cranking tasks
you need to do on a regular basis may very well be a target worth shooting for.

The main objective of this document is to provide concepts and examples of scripting within
SecureCRT – information that might even help you accomplish more work in less time.

HHooww TThhiiss DDooccuummeenntt iiss OOrrggaanniizzeedd
The first two chapters of this document provide introductory information about how to create or edit
scripts and explore different ways of launching scripts.

The remaining chapters focus on goals/tasks and provide actual solutions in the form of example
scripts. If you’re looking for example code right away, skim through the chapters and pay special
attention to the solution sections indicated by the Solution indicators within the table of contents
and throughout this document.

If you’re looking to learn a few tips and tricks which may help stock your toolbox with time-saving
techniques that you might find useful in various automation scenarios, consider reading through this
document chapter by chapter.

CCoonnvveennttiioonnss UUsseedd iinn TThhiiss DDooccuummeenntt

LLaanngguuaaggee UUsseedd
SecureCRT’s use of ActiveX technology allows a script author to use any ActiveX scripting
language for which a scripting engine is available to interface with SecureCRT as the script
host. Examples include VBScript and JScript, which are both native to Windows. Another
example of an ActiveX scripting language that can be used is PerlScript, which requires a third-
party Perl ActiveX scripting engine be installed.

VBScript, also known as Visual Basic Scripting Edition, is the language of choice for this
document. All example script code herein is written using the VBScript language. If you are not
familiar with VBScript, reference documentation is available both online and for download from
Microsoft.

Online:
http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx
If the above link doesn’t work, perform a web search on the terms “Windows Script
Technologies Documentation” and you should be provided with an up-to-date link. Of
particular note would be the VBScript User’s Guide which gives information specific to
using VBScript in general, and also the VBScript Language Reference which provides
explanations of core components of the VBScript language.

Download:

http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx�

A Guide to Using VBScript in SecureCRT 2 © 2009-2010 VanDyke Software, Inc.

http://www.microsoft.com/downloads/details.aspx?FamilyId=01592C48-207D-4BE1-
8A76-1C4099D7BBB9
If the above link doesn’t work, performing a web search on the terms “Windows Script
Technologies Download” should provide you with an up-to-date link for downloading the
documentation in Compiled HTML Help (.chm) format directly from Microsoft.

CCooddiinngg SSttyyllee aanndd CCoonnvveennttiioonnss
Throughout this document you’ll see the use of specific font styles that indicate either actual
VBScript code or reflect user interface labels. The following table outlines these font styles and
their associated meanings.

Style Reflects Example

Fixed-width font VBScript Code, file names
and extensions.

MsgBox "Hello World!"

Bolded Text User interface labels or
window titles.

Open up the main Script menu and
choose Start Recording Script.

Examples of VBScript code throughout this document attempt to adhere to a common variable
naming convention where variables are named loosely according to their purpose. Since
VBScript is not a “typed” language, this naming convention helps remind the reader (and the
author) of the intended use of each variable. This naming convention is presented in the table
below.

Prefix Intended Use and Meaning Example
b Boolean variable whose value will

typically be either True or False.

bConnected = crt.Session.Connected

n Numeric variable whose value will
typically be numeric.

nCounter = nCounter + 1

str String variable for holding generic
text.

strLogFile = crt.Session.LogFileName

obj Object variable referencing an
object.

Set objShell = CreateObject("WScript.Shell")

v Array (vector) variable that
references an array of elements.

vElements = Split(strLine, ",")

g_ Indicates that a variable is intended
for use in a global scope. Helps
keep track of variables that might
be used both inside subroutines
and functions as well as outside
the scope of methods and
functions.

Set g_strMyDocs = _
objShell.SpecialFolders("My Documents")

SSeeccuurreeCCRRTT’’ss SSccrriippttiinngg OObbjjeeccttss//AAPPII RReeffeerreennccee
This scripting guide focuses on scripting techniques specifically related to solving a variety of
problems by providing actual solution code that you can take and modify to meet your needs.

If you are looking for documentation detailing all of the SecureCRT scripting objects, methods,
properties, and related parameters (the API reference), you’ll find it in the SecureCRT Help file.
The SecureCRT scripting objects/API reference is found by opening the SecureCRT Help, and
browsing to the ActiveX Scripting / Script Objects Reference chapter, as indicated in the graphic
below:

http://www.microsoft.com/downloads/details.aspx?FamilyId=01592C48-207D-4BE1-8A76-1C4099D7BBB9�
http://www.microsoft.com/downloads/details.aspx?FamilyId=01592C48-207D-4BE1-8A76-1C4099D7BBB9�

A Guide to Using VBScript in SecureCRT 3 © 2009-2010 VanDyke Software, Inc.

A Guide to Using VBScript in SecureCRT 4 © 2009-2010 VanDyke Software, Inc.

CChhaapptteerr 11:: CCrreeaatt iinngg SSccrriippttss
Have you ever heard the saying, “You have to spend money in order to save money”? The same
concept can be applied to scripting in SecureCRT:

You have to take time to save time.

Fortunately, taking time to automate routine tasks with SecureCRT can pay big dividends – even
without a huge initial investment.

So where do you start? A few options are available for generating a script that may save you oodles of
time in the long run:

 Starting from scratch with a new script.
 Recording a script using the SecureCRT Script Recorder.
 Modifying an existing example script.

Let’s explore each of these options in more detail.

11..11 SSttaarrtt iinngg ffrroomm SSccrraattcchh wwiitthh aa NNeeww SSccrriipptt
Whether you are a seasoned VBScript guru or are looking at using VBScript for the first time, you
may want to know the following guidelines for successfully writing a script for use within
SecureCRT.

IInncclluuddee aa SSeeccuurreeCCRRTT SSccrriipptt HHeeaaddeerr
The first requirement is to ensure that your script code identifies the ActiveX scripting language
engine that needs to be instantiated in order to run your script code. This identification is done
through the use of a SecureCRT script header. For all scripts written in the VBScript language,
this script header should be written as follows:

#$Language="VBScript"
#$Interface="1.0"

Note that a script header is not required as long as the file extension is registered in the registry
to be handled by a corresponding ActiveX script engine. For example, on most Windows
systems that have Internet Explorer 4.0 or later installed, the “.vbs” file extension is already
registered for interpretation by the VBScript engine available by default.

However, you might want to save all of your script files without a .vbs extension. For example,
if you want to store all your script files as .txt files, you will need to include a script header as
indicated above. In this document, focus is centered on the use of the VBScript language. For
additional information about script headers applicable to other ActiveX languages, visit the
“ActiveX Scripting” chapter of the SecureCRT help, specifically the topic titled “Creating Scripts”.

OOrrggaanniizzee CCooddee IInnttoo SSuubbrroouuttiinneess aanndd FFuunnccttiioonnss
To Main() or not to Main()? That is the question. Native VBScript support for subroutines,
functions, classes, and other statements remain alive and well when interpreted within
SecureCRT. Therefore, statements like Sub and Function and their corresponding End Sub and

A Guide to Using VBScript in SecureCRT 5 © 2009-2010 VanDyke Software, Inc.

End Function counterparts are available to you for the purpose of organizing your script code
into logical units of separation.

If a Main() subroutine is found by SecureCRT, Main() will be called automatically. Note that this
is in contrast to any native VBScript code where subroutines and functions must be explicitly
called in order to execute.

While it is not a requirement that you place your code within a Main() subroutine, there are
some good reasons why you might want to do so.

 The VBScript engine will parse and execute global1 script code before your Main()
subroutine is executed. This allows you to set up global variables so they are initialized
and available prior to your Main() subroutine being called.

 Including the core components of your script within a Main() subroutine provides a way
of aborting script execution in the event that you detect a problem or otherwise need to
abort execution (user cancels an InputBox, for example). Since the WScript.Quit
method is not available for use within a SecureCRT script, if you want to stop execution
of your script, you can do so with the use of the Exit Sub statement. For example:

Sub Main()
 ' Prompt the end user for data
 strAnswer = InputBox("Please enter your name:")

 ' Check to see if the user provided any data, or canceled.
 If strAnswer = "" Then

MsgBox "User Canceled."
Exit Sub

 End If

 ' If the user didn't cancel, move forward with
 ' the remainder of the script code...
 crt.Session.Connect "/S MySession"
 .
 .
 .
End Sub

11..22 RReeccoorrddiinngg aa SSccrriipptt
Perhaps the quickest way to create a script that will do something useful is to use the Script
Recorder feature introduced in SecureCRT 5.5. One nice thing about using the Script Recorder is
that relevant code reflecting exactly what you recorded is included in the resulting file. Code
resulting from a script recording will likely need to be modified in order to be launched in succession
on other machines or targeting additional devices, but the script recorder provides a great way for
novices and experts alike to get started creating a SecureCRT script.

A demonstration of recording a script that performs a series of commands while connected to a
remote UNIX machine will be shown. Then some of the more rudimentary edits that should be
made to enhance the effectiveness of a script for use on remote machines other than the one on
which the script was recorded will be exemplified.

Here are the general steps to follow when using the SecureCRT Script Recorder:

1 Global script code is code that exists outside of any subroutine, function, or class within your file.

A Guide to Using VBScript in SecureCRT 6 © 2009-2010 VanDyke Software, Inc.

1) Connect to the remote machine.
2) Start script recording.
3) Perform commands to be recorded.
4) Stop script recording.
5) Specify a filename in which to save the recorded script code.
6) Review and edit the recorded script file.

This walk-through will show the process of connecting to a remote UNIX system, enabling the script
recorder, and then issuing commands that will update the existing VShell installation with the new
version of the service. Once the script has been recorded, the script code will be reviewed and
cleaned up for general use on other machines.

The first step is to connect to the remote UNIX system. Once a shell prompt on the remote system
has been obtained in SecureCRT, choose Start Recording Script from the main Script menu as
indicated in the graphic below.

A Guide to Using VBScript in SecureCRT 7 © 2009-2010 VanDyke Software, Inc.

Now that the Script Recorder is active, commands specific to the task at hand are issued:

cd vshell-installers
ls
rpm –U vshell-3.5.0-306.rh8.i386.rpm
telnet localhost 22

When the work has been completed, open the main Script menu and choose Stop Recording
Script as indicated in the graphic below.

A Guide to Using VBScript in SecureCRT 8 © 2009-2010 VanDyke Software, Inc.

Once the script recording operation has been stopped, the user is prompted for the name of the file
in which to save the script code associated with the data that has been sent and received from the
remote system, as indicated in the graphic below.

After bringing up the “RecordedScript.vbs” file in an editor, the VBScript code which reflects the
send/receive activity that was just completed can be reviewed:

#$Language="VBScript"
#$Interface="1.0"

crt.Screen.Synchronous = True

' This automatically generated script may need to be
' edited in order to work correctly.

Sub Main()
 crt.Screen.Send "cd vshell" & chr(9) & chr(13)
 crt.Screen.WaitForString "$ "
 crt.Screen.Send "ls" & chr(13)
 crt.Screen.WaitForString "$ "
 crt.Screen.Send "rpm -U vshell-3.5.0-3" & chr(9) & chr(13)
 crt.Screen.WaitForString "$ "
 crt.Screen.Send "telnet localhost 22" & chr(13)
 crt.Screen.Send chr(13)
End Sub

Note that the script header is automatically included by the SecureCRT Script Recorder at the top
of the file.

A Guide to Using VBScript in SecureCRT 9 © 2009-2010 VanDyke Software, Inc.

Note also that exactly what was typed is reflected in the script code (not necessarily what was
displayed when it was typed). As an example, consider the first line of the Sub Main() code above,
where pressing the Tab key resulted in a chr(9) (ASCII Tab character) being sent to the remote
machine as part of the Send() operation:

crt.Screen.Send "cd vshell" & chr(9) & chr(13)

When typing this command in at the shell prompt within SecureCRT, the Tab key was pressed after
typing cd vshell, kicking in tab-line completion and the remote shell filled in the full path as
displayed on the screen: cd vshell-installers.

However, to be exactly sure of the command that should be sent when running the script on a
different machine, the script code will need to be modified to reflect the full command to send,
rather than reflect the exact keys that were typed while the script was being recorded:

crt.Screen.Send "cd vshell-installers" & chr(13)

The same approach would need to be taken to adjust for the use of tab-line completion when
sending the command rpm –U vshell-3.5.0-306.rh8.i386.rpm to ensure that the exact file desired
is in fact used (rather than relying on tab-line completion to always do the “right” thing). Hence, the
following line of code as recorded by the script recorder…

crt.Screen.Send "rpm -U vshell-3.5.0-3" & chr(9) & chr(13)

…would be modified as follows to ensure reliable execution:

crt.Screen.Send "rpm –U vshell-3.5.0-306.rh8.i386.rpm" & chr(13)

11..33 MMooddiiffyyiinngg aann EExxiissttiinngg EExxaammppllee SSccrriipptt
If at first you don’t succeed, borrow from those who have already succeeded. In the event that
creating a script from scratch or recording a script doesn’t get you close enough to achieving your
automation goals, you can always leverage existing solutions and examples to get you closer.

Example scripts exist in various forms:

• The “Example Scripts for SecureCRT for Windows” section of the VanDyke Support
website: https://www.vandyke.com/support/securecrt/scripting_examples.html.

• The "Scripting Examples" section of the VanDyke Support website:
https://www.vandyke.com/support/scripting/scripting-examples/index.html.

• The SecureCRT installer (version 6.1 or later) includes a variety of example scripts that
perform tasks reflecting the inquiries of many SecureCRT end users. If you decide to use
one of these examples as a starting place for your own script, it is strongly suggested that
you make a copy of the example script file and modify the copy, rather than modifying the
example’s original script file itself. If the original script files are modified, updating
SecureCRT to a newer version will result in restoring the example script files to their original
contents (since the example script files themselves are included as part of the SecureCRT
6.1 and later installers), resulting in the loss of all your modifications made to the original
example script files.

Here are some tips on what to look for when modifying existing code examples to meet your needs:

https://www.vandyke.com/support/securecrt/scripting_examples.html
https://www.vandyke.com/support/scripting/scripting-examples/index.html

A Guide to Using VBScript in SecureCRT 10 © 2009-2010 VanDyke Software, Inc.

RReevviieeww EExxaammppllee CCooddee CCoommpplleetteellyy BBeeffoorree RRuunnnniinngg IItt
You don’t want to run a script that potentially does something catastrophic to your system (local
or remote) without first knowing what you’re getting into. Be aware that your system might be
different from the system used by the author in creating the example script and take steps to
adjust the example to work for your system.

PPaayy AAtttteennttiioonn ttoo tthhee CCoommmmeennttss
Good examples provide comments as to the overall actions taken by the script, requirements,
and setup. Read through these carefully before launching an example script.

UUssee OOnnllyy WWhhaatt YYoouu NNeeeedd
There may be times where an example script does much more than you need or want, but it
contains that all-important clue as to how to do that one specific action you were looking for.
Sometimes it’s more effective to use only the components of the example you need to aid in
understanding so you can employ similar techniques in your own script.

A Guide to Using VBScript in SecureCRT 11 © 2009-2010 VanDyke Software, Inc.

CChhaapptteerr 22:: LLaauunncchhiinngg SSccrriippttss
At some point, regardless of whether you recorded a script, created a script from scratch, or modified
an example script you acquired, you’ll likely want to manually run the script and see if it does what you
need. After you’ve had a chance to perfect the script so that it accomplishes what you need it to do,
you may want to set up SecureCRT to run the script in an automated way so as to save yourself even
more time. In this section, both manual and automated script execution within SecureCRT will be
introduced. For automated script execution, ways to pass arguments to scripts to change the behavior
of the script based on the script arguments provided will also be described.

22..11 MMaannuuaall SSccrriipptt EExxeeccuuttiioonn
Manual script execution in SecureCRT is facilitated by means of the following mechanisms:

Using Script / Run… from SecureCRT’s main menu
Mapping a key to run a script
Launching a script from a button on SecureCRT’s button bar

UUssiinngg SSccrriipptt // RRuunn…… ffrroomm SSeeccuurreeCCRRTT’’ss MMaaiinn MMeennuu
The first time you run a script, it will likely be by manually choosing Run… from the main Script
menu in SecureCRT. Once you have launched a script in this fashion, it will appear within the
Recent Scripts section of SecureCRT’s Script menu.

A Guide to Using VBScript in SecureCRT 12 © 2009-2010 VanDyke Software, Inc.

Tip: If you wish to run the same script over and over again, but you aren’t ready to map a key

or set up a button bar to run the script, you can use the following keyboard shortcut
combination within SecureCRT to launch the most recently used script: Alt + S, 1.

MMaappppiinngg aa KKeeyy ttoo RRuunn aa SSccrriipptt
If you are anything like “Johnny Hotkeys”, and you have scripts that perform different functions,
each of which you would like to launch with the press of a keyboard combination of their own,
mapping a key to run a script might work well for you. Here’s the basic approach to mapping a
key to run a script:

1) Open the Session Options dialog and select the Terminal / Emulation / Mapped Keys
category:

Accessing the Session Options, “Mapped Keys” Category

A Guide to Using VBScript in SecureCRT 13 © 2009-2010 VanDyke Software, Inc.

2) Press the Map a Key… button and the Map Key window will appear.

3) With the Map Key window active, press the keyboard combination you wish to use when
launching the script (specifying which script to run is done in the subsequent step).

4) Select the Run Script action from the Function drop-down and then specify the path to

the script you wish to launch in the Run Script field.

Mapping a Key to Run a Script

If you want to be able to launch a script using the same mapped key in any session you are
connected to in SecureCRT, you’ll likely want to define the new mapped keys in your “Default”
session, and then apply the change to all your sessions. This task can be accomplished in
much the same way as above, with the following differences:

1) Bring up the Global Options dialog and choose the General / Default Session
category. Then press the Edit Default Settings button and the “Session Options –
Default” window will appear, allowing you to select the Mapped Keys category for the
Default session.

A Guide to Using VBScript in SecureCRT 14 © 2009-2010 VanDyke Software, Inc.

Accessing the “Default” Session

Pressing the Edit Default Settings… button will bring up the window depicted in the
following graphic.

A Guide to Using VBScript in SecureCRT 15 © 2009-2010 VanDyke Software, Inc.

Mapping Keys for the “Default” Session

2) Make the same configuration settings for mapping the key combination to run the script
as indicated above in the prior sequence of steps (1-4 as listed in the previous sequence
at the beginning of this section).

3) When you close the Session Options - Default dialog, you’ll be prompted if you would

like to make the change to all sessions.

WARNING: If you choose Yes when this prompt is presented, any existing mapped

keys already defined in individual saved sessions (excluding .key key
map files) will be replaced by the mapped key definitions now present in
the Default session.

A Guide to Using VBScript in SecureCRT 16 © 2009-2010 VanDyke Software, Inc.

Choose Yes here only if you have made mapped key definitions you desire to be
applied to all existing and future sessions – otherwise, you risk overwriting other session
settings with the additional changes that you have made in the Default Session.

Press the OK button to save key map changes to the “Default” session

Choose “Yes” only if you want the changes made to all existing sessions

LLaauunncchhiinngg aa SSccrriipptt ffrroomm aa BBuuttttoonn oonn SSeeccuurreeCCRRTT’’ss BBuuttttoonn BBaarr
SecureCRT 6.0 and later versions include a customizable button bar feature that a user can
employ to create buttons that perform specific actions. Running a script is one of the actions

A Guide to Using VBScript in SecureCRT 17 © 2009-2010 VanDyke Software, Inc.

available for assignment to a customized button on the button bar. This section describes the
process of setting up a customized button to run a script.

Before getting started with configuring the button itself, the button bar will need to be enabled if
it is not already visible. To enable the button bar in SecureCRT, open the main View menu and
choose the Button Bar menu item:

Enabling the Button Bar in SecureCRT

A Guide to Using VBScript in SecureCRT 18 © 2009-2010 VanDyke Software, Inc.

SecureCRT Window with the Button Bar Made Visible

Once the button bar is enabled, any currently undefined button can have an action defined by
clicking following these steps:

A Guide to Using VBScript in SecureCRT 19 © 2009-2010 VanDyke Software, Inc.

1) Press the undefined button.

Press an Undefined Button to Define an Action

2) When the Map Button window appears, choose Run Script from the Function drop-

down list.

3) In the Run Script field, specify the path to the script file you would like to run.

4) Provide a name for the button in the Label field and press the OK button.

A Guide to Using VBScript in SecureCRT 20 © 2009-2010 VanDyke Software, Inc.

Mapping a Button to Run a Script

To modify an existing button’s configuration, right-click on the button and choose Configure…
from the context menu.

Tip: If you run out of buttons for all your scripts or other time-saving functions on the “Default”

button bar, SecureCRT allows users to define more than one button bar, and switching
between existing button bars is done by using the button bar selection drop-down control
on the far right side of the button bar control.

Additional button bars can be created by right-clicking on any existing button, choosing
New from the context menu, and providing a name for the new button bar.

If in your organization and reorganization of buttons and button bars, you develop stagnant
button bars which you want to remove, you can do so by right-clicking on the targeted
button bar and choosing Delete from the context menu.

22..22 AAuuttoommaatteedd SSccrriipptt EExxeeccuuttiioonn
When you’ve tested your script and are ready to set it up for automated execution, you’ll use one of
the following methods depending on the goal you are trying to achieve. There are a couple of
different ways to automatically launch a script that will run as part of the connection process to
automate the logon process and even run a series of commands, if desired. The configuration
process for launching a logon script is as simple as making a change to the session configuration or
specifying a command line option.

CCoonnffiigguurriinngg aa LLooggoonn SSccrriipptt iinn aa SSaavveedd SSeessssiioonn
SecureCRT allows a script to be configured as a saved session’s “Logon Script”. If from within
SecureCRT’s Connect dialog a saved session with a logon script is used to establish a
connection, the specified script will run as part of the connection process.

To set up a script to run as soon as an existing session is used to connect to a remote machine,
follow the steps outlined below:

1. If the Connect dialog is not already displayed, open the Connect dialog by choosing
File / Connect from SecureCRT’s main menu.

A Guide to Using VBScript in SecureCRT 21 © 2009-2010 VanDyke Software, Inc.

2. Right-click on the session you would like to target and choose Properties from the
context menu.

3. When the Session Options window appears, select the Connection / Logon Actions
category (Note: in versions earlier than SecureCRT 6.1, the category is named Logon
Scripts).

4. Enable the Logon script option, specify the path to the script file you would like to run
during the connection process, and press the OK button.

If you are launching SecureCRT from the command line or from within a batch file, you can
instruct SecureCRT to automatically connect with a saved session. To automatically connect
with a saved session, use the /S <session_path> command line argument syntax, as in the
following example:

SecureCRT.exe /S My_Pre-configured_Session_Name

UUssiinngg tthhee //SSCCRRIIPPTT CCoommmmaanndd LLiinnee OOppttiioonn
As previously mentioned, SecureCRT supports command line options for automatically
connecting to a remote host using a saved session that you’ve pre-configured. In addition to
using saved sessions, SecureCRT supports making connections in an ad hoc fashion by
specifying connection information “on the fly” using appropriate session-specific command line
arguments as described in the SecureCRT help.

AAuuttoommaattiinngg SSccrriipptt EExxeeccuuttiioonn wwiitthh SSaavveedd SSeessssiioonnss
If you haven’t already associated a logon script with your pre-configured session as
described above (or if you want to use a different logon script specific to the task you will be
performing each time you connect with the same session), you can specify a logon script by
combining the /SCRIPT and /S command line arguments. Here’s an example that will
connect using the pre-configured session named “Redhat #1”, and run the script found at
“C:\Scripts\BackupCfg.vbs”:

SecureCRT.exe /SCRIPT "C:\Scripts\BackupCfg.vbs" /S "Redhat #1"

Tip: If you use the /SCRIPT command line option in conjunction with /S for a session that
already has a logon script defined within its session options, the script specified on the
command line with the /SCRIPT option will be launched, rather than the script specified
in the saved session options.

AAuuttoommaattiinngg SSccrriipptt EExxeeccuuttiioonn wwiitthh AAdd HHoocc CCoonnnneeccttiioonnss
Ad hoc connections are created with SecureCRT using command line options such as
/SERIAL, /TELNET, /SSH1, /SSH2, etc. with a command line typically resembling the following
pattern:

SecureCRT.exe /SSH2 /L myUser /PASSWORD myPassword 192.168.0.1

To run a script as part of an ad hoc connection, first use the /SCRIPT command line option
and provide the path to the script you want to run. Then append all of the usual ad hoc
session command line parameters. For example:

SecureCRT.exe /SCRIPT C:\Login.vbs /SSH2 /L user /PASSWORD pwd 192.168.0.1

Tip: Any options not specified on the command line will be defaulted to values defined in

the Default session (Global Options, General / Default Session category).

A Guide to Using VBScript in SecureCRT 22 © 2009-2010 VanDyke Software, Inc.

With a session configuration set up to run a Logon Script or /SCRIPT command line option as
indicated above, the script code specified will automatically be launched as part of the
connection process.

SSccrriipptt EExxeeccuuttiioonn TTiimmiinngg
The exact timing of the script code execution varies depending on the connection protocol
specified for the session or ad hoc connection according to the following table.

Protocol Script Execution Begins…
Serial After opening serial COM port.
SSH1

&
SSH2

SecureCRT 6.0.x and earlier: After successful authentication.

SecureCRT 6.1.x and later: Script execution timing depends on the value of
the Display logon prompts in terminal window option (Session Options,
Connection / Logon Actions category):

Disabled: After successful authentication.
Enabled: After TCP connection is made to SSH server. This allows

a script author to automate the authentication process by
waiting for and responding to username and password
prompts.

TAPI* After dialed number answers and a connection is established.
Telnet After TCP connection is made and Telnet options are negotiated.

* Tip: If you intend on scripting a connection that involves dialing to a remote system using the

TAPI protocol, please note that the dialing process is outsourced to the Windows operating
system where you have no control over progress dialogs and error messages being
displayed. If you intend to have a script dialing remote systems and you desire that no user
interaction be required to handle error cases, you might want to consider using the Serial
protocol to connect to the COM port of your mode and issue the dialing sequence manually
using ATDT commands specific to your modem, rather than using TAPI to do the dialing.
Dialing with the combination of the Serial protocol connecting to the COM port of the
modem and issuing ATDT commands provides the capability to detect dialing results like
NO CARRIER, and BUSY, as well as success cases such as CONNECTED.

PPaassssiinngg AArrgguummeennttss ttoo SSccrriippttss
When the /SCRIPT command line argument is used on the command line to launch SecureCRT
itself, script arguments can be specified using one or more /ARG command line arguments.
Keep in mind the following details when using /ARG to pass command line arguments to your
script:

 /SCRIPT and /ARG command line parameters are “standard” command line options (as
opposed to “session-specific” command line options) and must be placed on the
command line before any session-specific command line arguments when launching
SecureCRT.

Consider the example of using a pre-configured session to a jump host and using a
script to control the “jumping”. If, after connecting to your jump host using a saved
session named “MyJumpHost”, you desire to have the script issue a command to
connect to another host based on the arguments provided to your script for “IP address”
and “port”. The command line labeled Incorrect below might cause some confusing
error messages to be displayed. Since /S is a “session-specific” command line option, it

A Guide to Using VBScript in SecureCRT 23 © 2009-2010 VanDyke Software, Inc.

must be placed after (to the right of) all “standard” command line options as indicated in
the command line labeled Correct below:

Incorrect:
SecureCRT.exe /S "MyJumpHost" /SCRIPT "C:\ConnectToHost.vbs" /ARG 192.168.0.123 /ARG 23

Correct:
SecureCRT.exe /SCRIPT "C:\ConnectToHost.vbs" /ARG 192.168.0.123 /ARG 23 /S "MyJumpHost"

With the command line options specified in the Correct example above, SecureCRT
would first connect to the remote host specified in the saved session named
“MyJumpHost”, and then launch the “ConnectToHost.vbs” script, passing two arguments
to the script.

 Use the crt.Arguments script object in SecureCRT to access arguments passed to the

script. The crt.Arguments.Count property will indicate the number of arguments that
were passed to the script. Note in the “ConnectToHost.vbs” sample code below,
crt.Arguments.Count property is used to determine if sufficient arguments have been
passed to the script in order to successfully continue with script execution.

crt.Arguments(0) represents the 1st command line argument,
crt.Arguments(1) the 2nd,
crt.Arguments(2) the 3rd, and so on.

 Order is important when specifying more than one argument. Each /ARG option and

corresponding value will be assigned an argument index in order from left to right. This
means that the arguments must be specified in the same order as expected within the
script file. Consider the following section of code from a hypothetical sample
“ConnectToHost.vbs” implementation:

' First, ensure that sufficient arguments are provided as expected.
If crt.Arguments.Count < 2 Then
 MsgBox "Error: <hostname> and <port> arguments are required."
 Exit Sub
End If

strHost = crt.Arguments(0)
strIP = crt.Arguments(1)
MsgBox "Host arg: " & strHost & vbcrlf & "IP arg: " & strIP

Note the code emphasized in bold typeface above – the IP address is expected to be the
first (left-most) argument – crt.Arguments(0), and the port is expected to be the second
argument – crt.Arguments(1).

A Guide to Using VBScript in SecureCRT 24 © 2009-2010 VanDyke Software, Inc.

CChhaapptteerr 33:: CCoonnnneecctt iinngg ttoo RReemmoottee MMaacchhiinneess
Whether the machine you need to access is on the other side of the world, or on the other side of your
office, at some point you’ll likely need to connect to a remote machine in order to get your job done.
This chapter will begin by introducing two of the most common methods used in SecureCRT scripting to
connect to one or more devices from within a script: Connecting with a pre-configured session, or
Connecting in an “ad hoc” fashion.

Later in this chapter, the process of establishing multiple connections within tabs will be detailed. This
discussion will include an example script solution exemplifying how to open a group of sessions in
separate tabs within the same instance of SecureCRT.

Although the topic is introduced as “how to connect to a remote machine”, you might also want to know
how to disconnect from a remote machine. An example script solution will be included that shows how
to implement a client-side automatic “inactivity” disconnect if a certain amount of time has elapsed
without any user keyboard activity within SecureCRT.

Within a SecureCRT script, connections to devices or remote machines are established using the
Session object reference documented within the ActiveX Scripting / Script Objects Reference chapter
within the SecureCRT Help. There are two methods available with the Session object that can be used
to establish these connections: Connect() and ConnectInTab(). These methods both accept similar
parameters containing information SecureCRT needs in order to successfully establish the desired
connection. The ConnectInTab() method returns a reference to a new Tab object that can be used to
further manipulate the newly-created tab in which the connection is made.

The parameters you will need to pass to the Connect() and ConnectInTab() methods will differ
depending on whether you will be using a pre-configured session, or ad hoc connection information.

33..11 CCoonnnneeccttiinngg wwiitthh aa PPrree--ccoonnffiigguurreedd SSeessssiioonn
If you’ve been using SecureCRT for a while now and have already built up a repository of session
configurations you normally use for manual connections, you can use your existing sessions within
a script to establish a connection. The syntax for connecting using a pre-configured session within
a script follows the pattern SecureCRT provides for making connections when launching
SecureCRT from the command line: /S <session_path>. For example, the following statement
will instruct SecureCRT to establish a connection using a pre-configured session named “Redhat8”
located directly beneath the "Sessions" folder in the SecureCRT Connect dialog:

crt.Session.Connect "/S Redhat8"

When using a pre-configured session, the hostname and connection protocol are specified within
the session configuration data, as well as any other information needed in order to successfully
connect and authenticate to the remote system (such as username and password, for example).

If your session exists within a nested folder one or more levels deep, as it appears within the
SecureCRT Connect dialog folder tree, the entire "session path" will need to be specified.
Consider the session named "Cisco Pix 5" shown selected in the graphic below:

A Guide to Using VBScript in SecureCRT 25 © 2009-2010 VanDyke Software, Inc.

The “Cisco Pix 5” session shown in the graphic above is located within several subfolders, and the
name of the session includes spaces. In order to account for these characteristics, the following
VBScript statement would be needed in order to properly specify the session path:

crt.Session.Connect "/S ""Routers\Region 02\Cisco Pix 5"""

TIP: Literal double quote characters need to be escaped within strings in VBScript code; one
literal double quote within a string is specified with two double quotes: "" (That's two
double quote characters, not 4 single quotes or "ticks"). If you find this technique or
syntax confusing, you can use the VBScript built-in chr() function in combination with
VBScript string concatenation to achieve an easier-to-read statement. The ASCII double
quote character value is decimal 34, so chr(34) is another way of representing the literal
double quote character. For example, the two statements below are identical in terms of
what each statement accomplishes:

crt.Session.Connect "/S " & chr(34) & "Routers\Region 02\Cisco Pix 5" & chr(34)

crt.Session.Connect "/S ""Routers\Region 02\Cisco Pix 5"""

33..22 CCoonnnneeccttiinngg iinn aann ““AAdd HHoocc”” FFaasshhiioonn
Earlier in this document, the process of establishing a connection using SecureCRT’s command
line options was explained in connection with running a script from the command line. Connections
can be established within a SecureCRT script in an ad hoc manner similar to what SecureCRT
expects when ad hoc connections are established with sufficient SecureCRT command line
parameters. Here is an example of a VBScript statement that will result in using the SSH2 protocol
to connect to a machine named "redhat8", and authenticate with a username of "root" and a
password of "br8km3N0w!". Note the use of the familiar command line options /SSH2, /L and
/PASSWORD:

crt.Session.Connect "/SSH2 /L root /PASSWORD br8km3N0w! redhat8"

A Guide to Using VBScript in SecureCRT 26 © 2009-2010 VanDyke Software, Inc.

Here is an example of a VBScript statement that will result in using the Serial protocol to connect to
COM2 with a baud rate of 38400:

crt.Session.Connect "/Serial COM2 /BAUD 38400"

Tip: With ad hoc connections, session settings from the Default session are used

for any options not specified as parameters to the Connect() method. Any
options not specified as parameters to the Connect() method will be defaulted
to values defined in the Default session (Global Options, General / Default
Session category).

The following table from the SecureCRT Help file shows command line options that are specific to
protocols supported by SecureCRT’s Connect() method. The table also shows common options
corresponding to each individual protocol. You can find a more complete table in the Table of
Protocol Specific Command Line Options topic within the SecureCRT Help file.

Protocol Option
(with mandatory and [optional]
arguments as indicated)

Related Optional
Arguments Description

/S session_name N/A Opens a connection with a pre-existing
session found in session_path.

/SSH2 [options] hostname

/I IdentityFile

/L Username

/PASSWORD password

/P port

Opens a connection to hostname using the
SSH2 protocol and any specified options.

Location of the private key file for publickey
authentication.

Account name to use for authentication.

Password to use for authentication.

Port on which SSH2 server is listening for
incoming connections.

/Telnet hostname [port] N/A Opens a connection to hostname using the
Telnet protocol to connect to specified port
(port 23 is used if port is not specified).

/Serial port [options]

/BAUD baudrate

Opens a connection using the Serial
protocol to the COM port specified.

Sets the baud rate to use when connecting
to the serial port. The default baud rate is
38400.

33..33 CCoonnnneeccttiinngg iinn TTaabbss
While some scripting applications may only warrant connecting and disconnecting to various
machines in a loop within the same tab, other use cases may involve the need to open up multiple
connections, each in separate tabs.

While this document focuses on the scripting aspect, if you simply want to accomplish starting
SecureCRT with several sessions in tabs, you can use the /T command line option in combination

A Guide to Using VBScript in SecureCRT 27 © 2009-2010 VanDyke Software, Inc.

with multiple /S <session_path> specifications to achieve your goal. For example, the following
command line will launch SecureCRT and connect to the “Redhat 8”, “Cisco Pix 5”, and
“SuseServer” sessions, each session within its own tab in the same SecureCRT window:

SecureCRT.exe /T /S "Redhat 8" /S "Cisco Pix" /S "SuseServer"

Opening multiple tabs can be accomplished in a variety of ways with a SecureCRT script:

 The Session object’s ConnectInTab() method
 The Tab object’s Clone() and ConnectSFTP() methods
 The SessionConfiguration object’s ConnectInTab() method

OOppeenniinngg aa CCoonnnneeccttiioonn iinn aa NNeeww TTaabb wwiitthh SSeessssiioonn..CCoonnnneeccttIInnTTaabb(())
The Session.ConnectInTab() and SessionConfiguration.ConnectInTab() methods
require the same parameters required by the Session.Connect() method described earlier
in this chapter.

In contrast to the Session.Connect() method, both the Session.ConnectInTab() and
SessionConfiguration.ConnectInTab() methods result in the creation of a new tab. In
addition, a reference to a tab object is returned by each method, allowing further control of
the tab in which the connection attempt is made.

Here is an example of using the Session.Connect() method to establish connections to
three different servers, each in a separate tab.

' Connect to three separate sessions each in its own tab.
Dim objTab1, objTab2, objTab3
Set objTab1 = crt.Session.ConnectInTab("/S ""Redhat Boxen\Redhat 8""")
objTab1.Caption = "Redhat 8"

Set objTab2 = crt.Session.ConnectInTab("/S ""Routers\Cisco Pix 506E""")
objTab2.Caption = "Cisco Pix"

Set objTab3 = crt.Session.ConnectInTab("/S ""Solaris Boxen\Solaris 10""")
objTab3.Caption = "Solaris 10"

CClloonniinngg aann EExxiissttiinngg TTaabb wwiitthh TTaabb..CClloonnee(())
When working within the SecureCRT GUI, a tab can be "cloned" by right-clicking on the
session tab and selecting the Clone Session option or by opening the File menu and
selecting the Clone Session option. This will create a session connection that is identical to
the current session. If the original session is using the SSH2 protocol, the transport is
shared and re-authentication is not needed. For other protocols (except Serial and TAPI,
which cannot be cloned), authentication is required.

To clone a tab within a SecureCRT script, you perform the following steps:

1) Get a reference to the tab object you wish to clone.
2) Call the Clone() method using the tab object reference acquired in step 1.

Here is an example snippet of VBScript code that shows how tab cloning is done:

Dim objTab, objTabClone1, objTabClone2
Set objTab = crt.Session.ConnectInTab("/S ""Redhat Boxen\Redhat 8""")
objTab.Caption = "Redhat 8 - Main"

A Guide to Using VBScript in SecureCRT 28 © 2009-2010 VanDyke Software, Inc.

' Clone the SSH2 main tab once
Set objTabClone1 = objTab.Clone
objTabClone1.Caption = "Redhat 8 - Cloned Tab"

' Now clone the cloned tab
Set objTabClone2 = objTabClone1.Clone
objTabClone2.Caption = "Redhat 8 - Clone of a Clone"

OOppeenniinngg aann SSFFTTPP TTaabb wwiitthh TTaabb..CCoonnnneeccttSSFFTTPP(())
When working within the SecureCRT GUI, if you have an SSH2 session connected, you can
open an SSH file transfer protocol (SFTP) command line file transfer session using the
same transport as the existing SSH2 session either by opening the SecureCRT File menu
and selecting the Connect SFTP Tab option, or by right-clicking on the SSH2 session’s tab
and choosing Connect SFTP Tab from the tab context menu.

An SFTP tab can be opened within SecureCRT script using the ConnectSFTP() method
associated with a reference to a tab object. Here is an example script showing a plausible
file transfer automation using an SFTP tab:

Dim objTab, objSFTPTab
Set objTab = crt.Session.ConnectInTab("/S ""Redhat Boxen\Redhat 8""")
objTab.Caption = "Redhat 8 - Main"

' Create an SFTP tab associated with the existing tab
Set objSFTPTab = objTab.ConnectSFTP

' Wait for the SFTP tab to be ready for input.
objSFTPTab.Screen.Synchronous = True
crt.Sleep 1000
objSFTPTab.Screen.Send vbcr
objSFTPTab.Screen.WaitForString "sftp>"

' Upload all .txt files in the current local working directory to
' the current remote working directory.
objSFTPTab.Screen.Send "put *.txt" & vbcrlf
objSFTPTab.Screen.WaitForString "sftp>"

' Close the SFTP tab
objSFTPTab.Close

' Close the connection on the originating SSH2 connection's tab
objTab.Session.Disconnect

Note: The SFTP tab is only available for SSH2 connections. Attempting to open an SFTP

tab with the ConnectSFTP() method using a tab connected via a non-SSH2 protocol
will result in a scripting error.

 SSoolluutt iioonn:: OOppeenn aa GGrroouupp ooff SSeessssiioonnss iinn TTaabbss
This code solution shows how to open a group of tabs connected to different sessions each within
the same SecureCRT window.

' 1) Connect to three separate sessions:
' - Production machine: "Redhat 8 - Production"

A Guide to Using VBScript in SecureCRT 29 © 2009-2010 VanDyke Software, Inc.

' - Testing machine: "Redhat 8 - Testing"
' - Development machine: "Redhat 8 - Development"
'
' 2) Change working directory to match target machine first step after connection
'
' 3) Name each tab appropriately

Dim objProdTab, objTestTab, objDevTab

Set objProdTab = crt.Session.ConnectInTab("/S ""Redhat Boxen\Redhat 8 - Production""")
objProdTab.Screen.Synchronous = True
objProdTab.Screen.WaitForString "]$", 5
objProdTab.Screen.Send "cd production" & vbcr
objProdTab.Caption = "Production"

Set objTestTab = crt.Session.ConnectInTab("/S ""Redhat Boxen\Redhat 8 - Testing""")
objTestTab.Screen.Synchronous = True
objTestTab.Screen.WaitForString "]$", 5
objTestTab.Screen.Send "cd testing" & vbcr
objTestTab.Caption = "Testing"

Set objDevTab = crt.Session.ConnectInTab("/S ""Redhat Boxen\Redhat 8 - Development""")
objDevTab.Screen.Synchronous = True
objDevTab.Screen.WaitForString "]$", 5
objDevTab.Screen.Send "cd development" & vbcr
objDevTab.Caption = "DEV"

33..44 DDiissccoonnnneeccttiinngg AAccttiivvee CCoonnnneeccttiioonnss
Disconnecting an active connection is done through the Session.Disconnect() method. Example
situations in which it is either desired or necessary to perform a disconnect operation include:

 When connecting to a series of target hosts within a single tab and performing a set of
operations on each host, you must first disconnect any existing connection before you can
successfully connect to another host within the same tab. Consider the following code
fragment showing how to disconnect any currently established connection prior to
connecting to the next machine:

' Make sure we are disconnected before attempting a connection
If crt.Session.Connected Then crt.Session.Disconnect

' ~~
' Connect to host 192.168.0.1
crt.Session.Connect "/SSH2 /L user /PASSWORD p4$$w0rd 192.168.0.1"
' Do work on the remote machine.
...
' Disconnect before moving on to the next host
crt.Session.Disconnect

' ~~
' Connect to host 192.168.0.2
crt.Session.Connect "/SSH2 /L user /PASSWORD vuln3r4ble 192.168.0.2"
' Do work on the remote machine.
...
' Disconnect before moving on to the next host
crt.Session.Disconnect

' ~~
' Connect to host 10.0.225.11
crt.Session.Connect "/SSH2 /L user /PASSWORD g0ldpl8ted 10.0.225.11"

A Guide to Using VBScript in SecureCRT 30 © 2009-2010 VanDyke Software, Inc.

' Do work on the remote machine.
...
' Disconnect before moving on to the next host
crt.Session.Disconnect

.
.
.

 The user may want to automatically disconnect if no activity has occurred within a specified

period of time (idle disconnect). The Solution section below details a fully functional auto
disconnect script example.

 SSoolluutt iioonn:: AAuuttoommaattiiccaall llyy CClloossee aann IInnaacctt iivvee CCoonnnneeccttiioonn ((AAuuttoo
DDiissccoonnnneecctt))
Many users want to ensure that they stay connected forever (or as long as possible) to a remote
machine. However, if you are in an environment that incurs cost by the number of minutes
connected, or if being connected to a remote machine precludes other connections from being
made successfully to the server, you may desire to automatically close a connection if it hasn't been
used for a specified period of time. The following script code exemplifies an auto logout solution
using the crt.Screen.WaitForKey() method to detect when user input occurs, resetting a timeout
loop until a key press isn't detected for a specified period of time.

#$Language="VBScript"
#$Interface="1.0"
' AutoTimeout.vbs
'
' Description: This example script checks activity (screen
' output) and closes SecureCRT if "idle" for
' more than the specified number of minutes.

Dim g_nTimeoutMinutes

' For testing purposes, this value is initially set to 15
' seconds (1/4 minute) Once you've tested that the script
' works successfully to disconnect your inactive session
' after 15 seconds, set the g_nTimeoutMinutes value to the
' desired number of idle minutes that would occur prior to
' disconnecting the session.
g_nTimeoutMinutes = .25

' Using GetScriptTab() will make this script 'tab safe' in
' that all of the script's functionality will be carried out
' on the correct tab. From here on, the objTab object will
' be used instead of the 'crt' object.
Dim g_objTab
Set g_objTab = crt.GetScriptTab
g_objTab.Screen.Synchronous = True

'~~
Sub Main()
 ' Detecting key presses is likely the best way to determine
 ' if user activity is occurring. Each time the user presses
 ' a key, the "timer" will be reset, waiting for the timeout
 ' period to elapse.
 Do
 ' WaitForKey takes seconds, so convert from g_nTimeoutMinutes to
 ' seconds

A Guide to Using VBScript in SecureCRT 31 © 2009-2010 VanDyke Software, Inc.

 Loop While g_objTab.Screen.WaitForKey(g_nTimeoutMinutes * 60)

 ' We will not get to this line unless the loop above is
 ' terminated (which will happen as soon as we timeout
 ' waiting for any key to be pressed)
 g_objTab.Session.Disconnect
End Sub

33..55 CCoonnnneeccttiinngg ttoo aa LLiisstt ooff RReemmoottee MMaacchhiinneess WWiitthhiinn aa LLoooopp
In the example code provided in the Disconnecting Active Connections section above, connections
were done in a sequential method, repeating the same code (with slight modifications) for each
target machine. Even if there are only two or three machines being targeted for connections within
a script, you will likely want to create a code loop in which to iterate through each target machine,
connect, issue commands, and then disconnect. The example code below shows this pattern of
connect do_work disconnect using an array (vHosts) to store the remote devices to which
connections are established.

Dim vHosts(100)
vHosts(0) = "192.168.0.1"
vHosts(1) = "192.168.0.2"
vHosts(2) = "10.0.100.50"
.
.
.

For Each strHost In vHosts
 If strHost = "" Then Exit For

 ' Make sure we are disconnected before attempting a connection
 If crt.Session.Connected Then crt.Session.Disconnect

 ' Connect to the next host
 crt.Session.Connect "/SSH2 /L user /PASSWORD p4$$w0rd " & strHost

 ' Do work on the remote machine.
 .
 .
 .

 ' The Disconnect() action is done at the top of the loop (in the event
 ' that the tab in which this script is launched already has an
 ' active connection).
Next

33..66 HHaannddll iinngg CCoonnnneeccttiioonn FFaaii lluurreess WWiitthhiinn aa SSccrriipptt
If there’s a problem successfully connecting to a remote machine from within a script, by default,
SecureCRT will halt script execution and provide a notification of the failure using a message box
similar to what you see below.

A Guide to Using VBScript in SecureCRT 32 © 2009-2010 VanDyke Software, Inc.

This notification is great if you are debugging your script, or when a script is running within an
interactive SecureCRT window, because it halts script execution and provides you with specific
information about the script error – including the line of code on which the problem occurred.

However, if your goal is to automate a series of tasks to multiple remote machines, you likely do not
want such connection errors to result in pop-up messages halting your script. You may want to
handle the error in some other way (log it to an error file or some log file) that will allow your script
to move on to the remaining machines.

The mechanism for allowing errors to occur without halting script execution in VBScript code is the
On Error Resume Next statement which instructs the script host to allow any run-time errors to be
handled within the script.

It is important to recognize that the On Error Resume Next statement enables error handling for
the procedure in which the statement is made. If the On Error Resume Next statement is made
globally (outside of any function or subroutine) all run-time errors will be suppressed, potentially
masking errors other than those you intend to handle yourself.

You can resume normal run-time error handling by using the On Error Goto 0 statement, which is
VBScript’s unique way of allowing your script to tell the host, “OK. I’d like you, VBScript host
engine, to start handling errors as you normally do from here on.”

If you are connecting to multiple machines from within a loop, the following pattern can be used to
handle connection errors:

' Instruct the script host we want to handle errors ourselves, now:
On Error Resume Next

' Attempt to connect to the remote machine:
crt.Session.Connect "/SSH2 /L user /PASSWORD vuln3r4ble 192.168.0.2"

' Capture error code and description (if any)
nError = Err.Number
strErr = Err.Description

' Now, tell the script host that it should handle errors as usual now:
On Error Goto 0

If nError <> 0 Then
 ' Handle the error (log to a file, etc.)
 .
 .
 .

A Guide to Using VBScript in SecureCRT 33 © 2009-2010 VanDyke Software, Inc.

Else
 ' Do work on the remote machine.
 .
 .
 .

End If

The pattern outlined above can be applied to a function which can be called within a script, resulting
in a true or false return value from a newly-created Connect() function as demonstrated in the
code below:

#$Language="VBScript"
#$Interface="1.0"
' Connect-DetectErrorConnecting.vbs

Dim g_strError

Sub Main()
 Dim nResult, strConnectInfo

 '~~
 ' Example of host not found
 strConnectInfo = "/TELNET host_not_found"
 nResult = Connect(strConnectInfo)
 If nResult <> 0 Then
 ' Instead of displaying a message to the user, you would maybe
 ' write an error code to a file... MsgBox is just for sample
 MsgBox "Error connecting with info: " & strConnectInfo & _
 vbcrlf & vbcrlf & g_strError
 Else
 ' Connection was successful.
 ' Do the required work
 ' . . .

 ' Now that the work is done, disconnect from the remote...
 crt.Session.Disconnect
 End If
End Sub

'~~
Function Connect(strConnectInfo)
' Workaround that uses "On Error Resume Next" VBScript directive to detect
' Errors that might occur from the crt.Session.Connect call and instead of
' stopping the script with an unrecoverable error, allow for error handling
' within the script as the script author desires.

 g_strError = ""

 ' Turn off error handling before attempting the connection
 On Error Resume Next
 crt.Session.Connect strConnectInfo
 ' Capture the error code and description (if any)
 nError = Err.Number
 strErr = Err.Description
 ' Restore normal error handling so that any other errors in our
 ' script are not masked/ignored
 On Error Goto 0

A Guide to Using VBScript in SecureCRT 34 © 2009-2010 VanDyke Software, Inc.

 Connect = nError
 If nError <> 0 Then
 g_strError = strErr
 End If
End Function

A Guide to Using VBScript in SecureCRT 35 © 2009-2010 VanDyke Software, Inc.

CChhaapptteerr 44:: RReeaaddiinngg DDaattaa ffrroomm RReemmoottee MMaacchhiinneess
This chapter details techniques that relate to waiting for and capturing specific data upon arrival from a
remote machine. Some scenarios call for waiting for a command prompt to make sure the remote
machine is “ready” for commands to be sent. Other scenarios might require not only waiting for specific
data to appear, but also capturing and storing data from the remote machine.

44..11 AAcccceessssiinngg SSeelleecctteedd TTeexxtt oonn tthhee SSccrreeeenn
Perhaps the most straightforward way to “capture” data received from the remote machine is by
selecting the desired text as it appears within the terminal screen in SecureCRT. The selected text
can be accessed by using the crt.Screen.Selection object, a read-only object that returns the
text selected on the screen. See the example solution section below for a script that accesses the
selected text and performs a web search using the selection.

 SSoolluutt iioonn:: PPeerrffoorrmmiinngg aa WWeebb SSeeaarrcchh wwiitthh SSeelleecctteedd TTeexxtt
This example scripting solution shows how one can quickly do a web search using text selected in
the terminal window using the popular Google search engine.

$language = "VBScript"
$interface = "1.0"
' GoogleSelectedText.vbs
'
' Description:
' When this script is launched, the text selected within the terminal
' window is used as the search term for a web search using google.com.
' This script demonstrates capabilities only available in SecureCRT 6.1
' and later (Screen.Selection property).
'
' Demonstrates:
' - How to use the Screen.Selection property in SecureCRT 6.1 and later
' to get access to the text selected in the terminal window.
' - How to use the WScript.Shell object to launch an external application.
' - How to branch code based on the version of SecureCRT in which this script
' is being run.

Sub Main()
 ' Extract SecureCRT's version components to determine how to go about
 ' getting the current selection (version 6.1 provides a scripting API
 ' for accessing the screen's selection, but earlier versions do not)
 strVersionPart = Split(crt.Version, " ")(0)
 vVersionElements = Split(strVersionPart, ".")
 nMajor = vVersionElements(0)
 nMinor = vVersionElements(1)
 nMaintenance = vVersionElements(2)

 If nMajor >= 6 And nMinor > 0 Then
 ' Use available API to get the selected text:
 strSelection = Trim(crt.Screen.Selection)
 Else
 MsgBox "The Screen.Selection object is available" & vbcrlf & _
 "in SecureCRT version 6.1 and later." & vbcrlf & _
 vbcrlf & _
 "Exiting script."
 Exit Sub
 End If

 ' Now search on Google for the information.
 g_strSearchBase = "http://www.google.com/search?hl=en&q="

A Guide to Using VBScript in SecureCRT 36 © 2009-2010 VanDyke Software, Inc.

 Set g_shell = CreateObject("WScript.Shell")

 ' Instead of launching Internet Explorer, we'll run the URL, so that the
 ' default browser gets used :).
 If strSelection = "" Then
 g_shell.Run chr(34) & "http://www.google.com/" & chr(34)
 Else
 g_shell.Run chr(34) & g_strSearchBase & strSelection & chr(34)
 End If
End Sub

44..22 WWaaiitt iinngg ffoorr SSppeecciiff iicc DDaattaa ttoo AArrrriivvee
“Seek first to understand, and then to be understood.”

- Steven Covey, 7 Habits of Highly Effective People

If the task you are attempting to automate involves sending a series of commands to the remote
machine, keep the following “best practice” in mind: First make sure the remote machine is ready
to receive commands before you actually send them.

In the Creating Scripts chapter presented earlier, the concept of recording a script was introduced.
You may notice that the resulting recorded script code included in this earlier chapter exemplifies
this best practice, and almost every instance of sending a carriage return (chr(13)) is followed up
with a call to WaitForString() prior to issuing a subsequent call to Send().

SecureCRT provides a few methods that are designed to provide a way to halt script execution until
specified text arrives from the remote machine. Two of the most commonly-used functions of this
nature are WaitForString(), and WaitForStrings().

WWaaiittFFoorrSSttrriinngg(())
The WaitForString() method's syntax adheres to the following pattern:

[result =] object.WaitForString string [, timeout]

Object is always a reference to the Screen object associated with the connection to the
remote machine from which the data is being received. Here are a few examples with
explanatory comments:

' Example #1
' Wait for text using the screen associated with the
' connection within the tab in which the script started:
crt.Screen.WaitForString "pixfirewall>"

' Example #2
' Wait for text in the screen associated with the
' connection in the 2nd tab from the left:
Set objTab = crt.GetTab(2)
objTab.Screen.WaitForString "pixfirewall>"

' Example #3
' Wait for text in the screen associated with the
' connection that was just established in a new
' tab using crt.Session.ConnectInTab:
Set objTab = crt.Session.ConnectInTab("/Serial COM2 /BAUD 9600")
objTab.Screen.WaitForString "pixfirewall>"

A Guide to Using VBScript in SecureCRT 37 © 2009-2010 VanDyke Software, Inc.

If a timeout parameter is not specified, WaitForString() will wait indefinitely until the
text specified in the string parameter is detected in the output coming from the remote
machine. This means that if the text is never found, the script will run forever (or until
SecureCRT is closed, or Cancel is chosen from SecureCRT's main Script menu).

If a timeout parameter is specified, WaitForString() will wait until either the text
specified in the string parameter is found coming from the remote, or until the number of
seconds specified in the timeout parameter has elapsed. If the text in string is not
found before the time expires, the result of the WaitForString() method will be 0 (or
False). Otherwise, it will be -1 (or True, since any non-zero value in VBScript is treated
as True).

Using a timeout parameter is useful in situations where you aren't certain that the string
specified will be sent from the remote machine (or you want to guard against a coding error
in your script), and you don't want the script to run indefinitely. Here is a brief example of
using WaitForString() in combination with a timeout parameter to detect when the
specified time has elapsed without seeing the specified string.

Dim nResult
nResult = crt.Screen.WaitForString("pixfirewall>", 10)
If nResult = 0 Then
 MsgBox """pixfirewall>"" prompt not found in 10 second " & _
 "timeout period specified."
Else
 MsgBox """pixfirewall>"" prompt was found."
End If

WWaaiittFFoorrSSttrriinnggss(())
The WaitForStrings() method functions very similar to the WaitForString() method,
with the exception that WaitForStrings() supports passing in 1 or more string arguments to
detect.

The WaitForStrings() method's syntax is as follows:

[result =] object.WaitForStrings(string1, [string2, ..., stringn] [, timeout])

Instead of passing in a list of strings as arguments, an array of strings can be passed in as the
first argument, followed by an optional timeout argument. For example:

Dim vWaitFors
vWaitFors = Array("File not found", _
 "Access denied", _
 "Permission denied")

' Start a loop, waiting for any one of the target strings
' within 10 seconds. If a timeout occurs, exit the loop
Do
 Dim nResult
 nResult = crt.Screen.WaitForStrings(vWaitFors, 10)

 Select Case nResult
 Case 0
 MsgBox "Timed out waiting for strings!"
 Exit Do

A Guide to Using VBScript in SecureCRT 38 © 2009-2010 VanDyke Software, Inc.

 Case 1
 MsgBox "Found ""File not found"" string!"

 Case 2
 MsgBox "Found ""Access denied"" string!"

 Case 3
 MsgBox "Found ""Permission denied"" string!"
 End Select
Loop

An expanded sample script based on the code above is presented below.

 SSoolluutt iioonn:: RReecceeiivvee NNoottii ff iiccaattiioonn wwhheenn ““EErrrroorr-- IInnddiiccaattiinngg”” TTeexxtt
AAppppeeaarrss

#$language = "VBScript"
#$interface = "1.0"
' NotifyOnOutput.vbs
'
' Description:
' This example script shows how to use WaitForStrings()
' in combination with a Case..Select statement in
' VBScript to provide various forms of notification when
' specified text from the remote is detected.

Sub Main()
 ' This script is always running in the background until
 ' "Cancel" is selected from the Script menu.
 Do
 Dim nIndex
 ' Some example trigger strings... modify these, add
 ' more, etc... to match your use pattern
 nIndex = crt.screen.WaitForStrings(_
 "File not found", _
 "Access denied", _
 "Permission denied")

 ' The WaitForStrings() function returns the index of
 ' the string it found, so we could even use
 ' different notifications based on the output.
 Select Case nIndex
 Case 1
 ' Found "File not found"
 ' Activate the tab on which the script is
 ' running before displaying the message box.
 ' Otherwise, the end user will be missing
 ' some context :).
 crt.GetScriptTab.Activate
 crt.Dialog.MessageBox("Detected ""File not found"" error")

 Case 2
 ' Found "Access denied"
 ' In this case, we'll hide the window for a
 ' second, then show it again.
 crt.Window.Show 0
 crt.Sleep 1000
 crt.Window.Show 1

 Case 3

A Guide to Using VBScript in SecureCRT 39 © 2009-2010 VanDyke Software, Inc.

 ' Found "Permission denied"
 ' Let's be tricky/cheesy and play a sound
 ' file for this notification
 Set myShell = CreateObject("WScript.Shell")
 Set myFso = CreateObject("Scripting.FileSystemObject")
 myShell.Run "RunDll32.exe " & _
 myFso.GetSpecialFolder(1) & "\msdxm.ocx,RunDll " & _
 "/play /close C:\Windows\Media\Notify.wav"

 Case Else
 ' This is where you might consider handling
 ' for example, an unexpected index, or a
 ' timeout if it occurs (a time-out case
 ' would of course require that such a
 ' parameter be added to the WaitForStrings()
 ' call above).

 End Select
 Loop
End Sub

AAvvooiidd ""MMiissssiinngg"" DDaattaa wwiitthh SSccrreeeenn..SSyynncchhrroonnoouuss == TTrruuee

In order to avoid the potential for WaitForString() and its related methods to miss data that
is sent from the remote while other code within your script is being executed, it's important to
know about the Synchronous property associated with the Screen object. You may have
seen Screen.Synchronous = True statements appear within some of the sample code
you've seen earlier in this document; this section attempts to explain when it would be important
to use such statements within your code.

In order to demonstrate how data might be "missed" if the Synchronous property is set to
False, an example code segment is given below, followed by a series of screen-shots walking
through the code's execution. The code is initially crafted so that the Synchronous property is
explicitly set to True, and then later modified to False to demonstrate data being "missed".

' Set Synchronous to True so that we don't miss any data
crt.Screen.Synchronous = True

Sub Main()

 ' Drive the initial SSH handshake process by connecting
 ' to an SSH server, port 22 using the telnet protocol
 crt.Session.Connect "/telnet localhost 22"

 If crt.Screen.WaitForString("SSH", 5) Then
 MsgBox "Found ""SSH"""
 Else
 MsgBox "Timed out waiting for ""SSH"""
 Exit Sub
 End If

 ' Send a legitimate client IDENT string as per SecSH RFC
 crt.Screen.Send "SSH-2.0-" & vbcr

 ' Now, let's explore waiting for various strings as they
 ' would appear from the server
 If crt.Screen.WaitForString("diffie-hellman-group1", 5) Then
 MsgBox "Found ""diffie-hellman-group1"""
 Else
 MsgBox "Timed out waiting for ""diffie-hellman-group1"""

A Guide to Using VBScript in SecureCRT 40 © 2009-2010 VanDyke Software, Inc.

 Exit Sub
 End If

 If crt.Screen.WaitForString("diffie-hellman-group-exchange-", 5) Then
 MsgBox "Found ""diffie-hellman-group-exchange-"""
 Else
 MsgBox "Timed out waiting for ""diffie-hellman-group-exchange-"""
 Exit Sub
 End If

End Sub

Here is a sequence of screen-shots depicting the code above in action (Synchronous is set to
True).

1) As expected, the first string the code is waiting for, "SSH", is found. Note that the screen
only shows the data received up to the "SSH" string:

A Guide to Using VBScript in SecureCRT 41 © 2009-2010 VanDyke Software, Inc.

2) The string "SSH-2.0-" is then sent to the remote system and the code then waits for the
next string to appear, "diffie-hellman-group1"; it appears as expected:

A Guide to Using VBScript in SecureCRT 42 © 2009-2010 VanDyke Software, Inc.

3) And finally, the last string our code waits for, "diffie-hellman-group-exchange-", is also
found as expected:

A Guide to Using VBScript in SecureCRT 43 © 2009-2010 VanDyke Software, Inc.

With only one modification to the original code above to set Synchronous to False, the
behavior and timing of WaitForString() changes drastically. Here's a walk-through of the
same code, but with Synchronous set to False:

1) "SSH" is found just fine. Note, however, that with Synchronous set to False, the
screen displays data that has been received past the point at which the "SSH" string was
found:

A Guide to Using VBScript in SecureCRT 44 © 2009-2010 VanDyke Software, Inc.

2) The "diffie-hellman-group1" string may also be found depending on the script and
network timing. However a timeout may occur, as happens in this particular case, when
waiting for the "diffie-hellman-group-exchange-" string – even though it appears on the
screen (as indicated in the marked section within the graphic below). This behavior is
due to the nature of the script code executing independent of the data being received
from the remote machine such that in the time it takes the next WaitForString() call
to be made within the script, the text being waited on in the code has already arrived:

The Synchronous property has the same relation to WaitForString() as it does to the
WaitForStrings(), and ReadString() methods.

If your script code seems to be "missing" data that appears on the screen, inspect your code
and ensure that the Synchronous property of the Screen object with which you are working is
set to True.

Be aware, however, that setting Screen.Synchronous to True can seem to have an impact
on SecureCRT's performance because data will not be displayed to the screen until calls to
WaitForString, WaitForStrings, ReadString, or WaitForCursor are made. For
example, the following script code will result in a successful connection to the remote host, but
nothing will be displayed to the terminal window since the script is looping forever (without
making any calls to ReadString, WaitForString, WaitForStrings, or WaitForCursor).

A Guide to Using VBScript in SecureCRT 45 © 2009-2010 VanDyke Software, Inc.

crt.Screen.Synchronous = True
crt.Session.Connect "/SSH2 localhost"

' Even though the connection above may be successful,
' nothing will ever be displayed to the terminal screen
' because a call to WaitForString, WaitForStrings,
' ReadString, or WaitForCursor is never made:
Do
 crt.Sleep 10
Loop

IIggnnoorriinngg EEssccaappee CCooddeess ((OOrr NNoott))
There might be situations in which the specific string you see on the screen isn't found by
ReadString(), WaitForString() or WaitForStrings() because when it is sent from the
remote system it has escape codes embedded within it, such as ANSI color codes. For the
sake of example, assume that your task involved waiting for the string “COLOR” (as depicted in
the graphic below) to occur before sending a command to the remote system:

Naturally, one would want to use the WaitForString() method. However, issuing a
WaitForString("COLOR") call wouldn't work because the text came from the remote as an
ANSI color escape sequence to change the color to green – followed by a 'C' character,

A Guide to Using VBScript in SecureCRT 46 © 2009-2010 VanDyke Software, Inc.

followed by an ANSI color escape sequence to change the color to yellow – followed by an 'O'
character, followed by an ANSI color escape sequence to change the color to red – followed by
an ‘L’ character, etc. If one looked at a raw log of the data SecureCRT received from the
remote for the “COLOR” string indicated in the graphic above, it would be similar to the
following:

ESC[32mCESC[33mOESC[31mLESC[33mOESC[35mR

Fortunately, SecureCRT's scripting API provides a mechanism to allow a script developer to
ignore escape codes, if desired, by setting the Screen.IgnoreEscape property to True. By
default, a Screen object's IgnoreEscape property is set to False. Setting IgnoreEscape to
True will allow WaitForString("COLOR") to work in the example above. For example:

crt.Screen.IgnoreEscape = True
crt.Screen.WaitForString("COLOR")

44..33 CCaappttuurriinngg DDaattaa ffrroomm aa RReemmoottee MMaacchhiinnee
The task you perform over and over again might involve looking for specific information on the
remote device or copying the data to another application. This section will describe different
methods that can be used to capture data from a remote machine.

The following methods associated with the Screen object can be used to capture data via a
connection to a remote machine: ReadString(), Get(), and Get2(). Although SecureCRT's
logging capabilities can also be used to capture data from a remote device, the logging API is
referenced and discussed in a later chapter (Writing Data to Files Using the FileSystemObject). If
you're looking for ways to access data that is currently selected within the SecureCRT terminal
screen, please see the earlier section, Accessing Selected Text on the Screen.

CCaappttuurriinngg TTeexxtt DDiissppllaayyeedd iinn aa SSppeecciiffiicc LLooccaattiioonn oonn tthhee SSccrreeeenn
If your task involves running an application that displays important data in specific locations
within the terminal screen, you can use the Screen object's Get() or Get2() methods to
capture data. Depending on your goal, you may find Get2() more useful than Get(). The
following screen-shot of a UNIX 'top' command in action is displayed in reference to the
explanation of how to use these two functions.

A Guide to Using VBScript in SecureCRT 47 © 2009-2010 VanDyke Software, Inc.

For this demonstration, assume your task involves capturing the number of total processes
running on the machine, as well as the amount of free memory. Looking at the screen, it would
be clear by way of visual inspection that the number of processes is 99, and the amount of free
memory is currently 253996K. But how would you automate the extraction of this information
within a script?

For such a task, the Screen object's Get() method provides a quick way to extract this
information from the screen. The Get() method expects four parameters that define the
starting row,col and ending row,col values associated with the location on the screen that
contains the desired text.

A Guide to Using VBScript in SecureCRT 48 © 2009-2010 VanDyke Software, Inc.

Rather than manually counting rows and columns, you can select the area of the screen you
want to capture with your mouse and pay attention to the starting and ending rows and columns
associated with the text you are selecting. For example, in the graphic below, the selected text
starts on row 5, column 36. The selection ends on row 5, column 41:

The example code below extracts the process count and free memory data values from the
screen as indicated above into two separate script variables:

' Extract data displayed on row 2, between columns 1 and 2
nProcesses = crt.Screen.Get(2,1,2,2)

' Extract data displayed on row 5, between columns 36 and 41
nFreeMem = crt.Screen.Get(5,36,5,41)

MsgBox "Number of Processes: " & nProcesses & vbcrlf & _
 "Free Memory: " & nFreeMem

A Guide to Using VBScript in SecureCRT 49 © 2009-2010 VanDyke Software, Inc.

CCaappttuurriinngg MMuullttiippllee LLiinneess ooff DDaattaa DDiissppllaayyeedd oonn tthhee SSccrreeeenn
Perhaps instead of capturing text from a specific location on the screen as described earlier,
your task involves capturing multiple lines of text as displayed on the screen. While the Get()
method can provide you with all of the lines you want, the Get2() method returns each line
separated by a carriage return plus line feed so that the lines can easily be split into an array for
processing. Using the previous example of 'top' running on a remote UNIX machine, if your task
involves capturing the block of lines indicated in the graphic below, you can use Get2() to
assist you.

The following code segment shows how to use Get2() to capture the block of lines indicated in
the above graphic.

' Extract lines of data from row 9 to row 24. Note that we
' start at column 1, and end with the number of columns
' currently associated with the screen; as the number of
' columns can by dynamic, we use the "Columns" property of the
' Screen object to tell us how many columns there currently
' are.
strLines = crt.Screen.Get2(9,1, 24,crt.Screen.Columns)

vLines = Split(strLines, vbcrlf)
For nIndex = 1 To UBound(vLines)
 MsgBox "Line #" & nIndex & ": " & vLines(nIndex - 1)
Next

A Guide to Using VBScript in SecureCRT 50 © 2009-2010 VanDyke Software, Inc.

For the sake of demonstration, the example above only displays each line individually. Later on,
tips will be given in the Extracting Specific Information section on how to extract specific
information from each line using a regular expression.

CCaappttuurriinngg DDaattaa SSttrreeaammeedd ffrroomm tthhee RReemmoottee
If the types of commands you are running on the remote system don't provide information in
nice tabular format, extracting the data you need would be tedious if all you had available were
Get() and Get2(). Instead of running a curses application like 'top', perhaps your task
involves running a command and capturing the output of that command. The ReadString()
method can be used to capture all data received from the remote until specific data is found. For
example, if you are attempting to connect to a Cisco device and retrieve its serial number, the
following code might work for you:

crt.Screen.Synchronous = True

' Send a command to a Cisco device to get the serial number
' of the device.
crt.Screen.Send "sh tech-support | in ([sS]erial)" & vbcr

' Wait for the CR to be echoed back to us so that what is
' read from the remote is only the output of the command
' we issued (rather than including the command issued along
' with the output).
crt.Screen.WaitForString vbcr

' Capture the result into a script variable
strResult = crt.Screen.ReadString("pixfirewall#")

' strResult will contain something like:
' Serial Number: 1850889413810201 (0x6935FC6075819)
MsgBox strResult

The example above simply captures the output that is received by SecureCRT between the time
that the command was sent and when the Cisco device's prompt appeared. Later in the
Extracting Specific Information section, tips will be given as to how to extract data more
precisely.

UUssiinngg MMaattcchhIInnddeexx ttoo DDeetteerrmmiinnee WWhhiicchh SSttrriinngg RReeaaddSSttrriinngg(()) DDeetteecctteedd
What if the command you issue returns more data that can fit on the SecureCRT screen? For
example, some commands issued on a Cisco device will display as much information as will fit
on the screen, followed by a "<--- More --->" prompt at the bottom. One way around this
would be to configure the device so that the device will send information without prompting the
user for input to display additional data. For example, on a Cisco Pix device, the 'pager
lines 0' command will cause commands like "sh config" to display all information without
prompting the user each time the screen fills up with data. However, if your device doesn't
support such a command, there is still a way to use ReadString() to capture all of the output
and simulate pressing the space bar to encourage the remote system to send another screen
full of data.

Consider the following example code which takes advantage of ReadString's ability to wait for
multiple strings and uses the MatchIndex property to determine which string was found in the
data from the remote. If a "More" prompt was found, the script code simply accumulates the
data read from the remote and presses the space bar so that more data will be sent. Once the

A Guide to Using VBScript in SecureCRT 51 © 2009-2010 VanDyke Software, Inc.

shell prompt is found, the script determines that all the data from the command has been
received from the remote.

crt.Screen.Synchronous = True

' Send a 'sh config' command to the Cisco PIX firewall.
crt.Screen.Send "sh config" & vbcr

' Wait for the CR to be echoed back to us so that what is
' read from the remote is only the output of the command
' we issued (rather than including the command issued along
' with the output).
crt.Screen.WaitForString vbcr

strCompleteOutput = ""
Do
 ' Capture the result into a script variable.
 ' Have ReadString() return after it sees one of the
 ' supplied strings "pixfirewall#" or the
 ' "...More..." tag.
 strResult = crt.Screen.ReadString("<--- More --->", "pixfirewall#")

 ' Append the results we've got so far to the complete
 ' results that are being accumulated.
 strCompleteOutput = strCompleteOutput & strResult

 ' If a "More" was found, send a space to get the next
 ' page of output from the remote
 If crt.Screen.MatchIndex = 1 Then crt.Screen.Send " "

 ' If the shell prompt was found, then we've received
 ' all of the output expected to have been sent from
 ' the remote.
 If crt.Screen.MatchIndex = 2 Then Exit Do
Loop

' A Cisco PIX sends each line followed by a line feed (LF)
' and a Carriage return (CR). Take care of each line that
' would have had "<--- More --->" on it. Depending on the way
' your device tries to "erase" the "<--- More --->" prompt, you
' may need to change the replace string below.
strCompleteOutput = Replace(strCompleteOutput, _
 vblf & vbcr & vbcr & " " & vbcr, vblf & vbcr)

MsgBox strCompleteOutput

EExxttrraaccttiinngg SSppeecciiffiicc IInnffoorrmmaattiioonn
Earlier, an example was provided describing how to capture the line of text returned by a Cisco
router indicating the serial number of the device. In this example, the output from the device
was an entire line that reads: Serial Number: 1850889413810201 (0x6935FC6075819)

Now, you’d like to get just the serial number itself (the part that reads, “1850889413810201”). This
section will exemplify some of the VBScript built-in mechanisms that can be employed to get at
exactly what it is you need from the output that has been received from the remote system. Not
wanting to “re-invent the wheel”, no attempt will be made to provide a completely exhaustive
documentation of all functions that could be possibly be used in such scenarios. For complete
documentation of the more common methods that can be used, consult Microsoft’s online

A Guide to Using VBScript in SecureCRT 52 © 2009-2010 VanDyke Software, Inc.

“VBScript Language Reference” mentioned in the introduction: http://msdn.microsoft.com/en-
us/library/t0aew7h6.aspx. More specifically, look in the “Functions” section for the following
gems:

 InStr InStrRev Mid
 Left Right Split

The discussion of the above will be limited to an example of the Split() function. In addition,
an example of using a regular expression to extract data will also be provided.

UUssiinngg SSpplliitt(()) ttoo PPaarrssee IInnffoorrmmaattiioonn

So you’ve extracted the following line from output from the remote:

Serial Number: 1850889413810201 (0x6935FC6075819)

One easy way to extract the serial number (1850889413810201), would be to use the
VBScript Split() function since the serial number is separated by a single space
character on each side. From the vantage point used for this example, the line above is
composed of 4 “tokens” with each token being separated by a “delimiter”. The delimiter in
this case is the space character and the tokens are “Serial”, “Number:”, “1850889413810201”,
and “(0x6935FC6075819)”. The Split() function takes a string along with a delimiter and
“splits” the string up into an array of tokens, where the tokens were separated from each
other by the delimiter supplied to the function. Consider the following example code that
demonstrates that the decimal value version of the serial number is the 3rd token (at index
#2, since arrays in VBScript are “zero-based” – in other words, the first index of an array is
zero):

strResults = "Serial Number: 1850889413810201 (0x6935FC6075819)"
vTokens = Split(strResults, " ")

For nIndex = 0 To UBound(vTokens) - 1
 MsgBox "Token at index " & nIndex & " is: " & vTokens(nIndex)
Next

MsgBox "The serial number is: " & vTokens(2)

UUssiinngg RReegguullaarr EExxpprreessssiioonnss ttoo PPaarrssee IInnffoorrmmaattiioonn
Once again, you’ve extracted the following line of information as part of the output from the
remote machine:

Serial Number: 1850889413810201 (0x6935FC6075819)

This time, however, you are faced with the following challenges:

 You know that some devices provide serial number information surrounded by more
than one space.

 You know that other devices only provide the output in terms of “Serial:
1850889413810201 (0x6935FC6075819)”, so using Split() and getting the token at
index #2 will not always provide you with the data you want.

In this situation, using a regular expression pattern could correctly extract the serial number
from either of the following strings that might be returned from the different remote devices:

Serial Number: 1850889413810201 (0x6935FC6075819)
Serial: 1850889413810201 (0x6935FC6075819)

http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx�
http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx�

A Guide to Using VBScript in SecureCRT 53 © 2009-2010 VanDyke Software, Inc.

Serial No.: 1850889413810201 (0x6935FC6075819)
Serial Number: 1850889413810201 (0x6935FC6075819)

Here’s a pattern that would work in all of the above cases to extract the serial number:
“\s+(\d+)\s+”. Here’s a breakdown of this pattern:

 \s+ matches one or more whitespace characters
 (\d+) matches one or more numeric digit characters (0-9), and the surrounding ()s

indicate that the regular expression execution should capture the text matching the
pattern of one or more digits for retrieval.

Here’s a section of code exemplifying one way to use a regular expression to extract the
serial number from any of the output variations described earlier:

strResults = "Serial Number: 1850889413810201 (0x6935FC6075819)"

' Create a new regular expression object
Set re = New RegExp

' Set the pattern to reflect the data we would like to extract;
' data between the ()s will be extracted if the pattern is found
re.Pattern = "\s+(\d+)\s+"

' First, test to see if the text we have contains the pattern...
If re.Test(strResults) <> True Then
 MsgBox "Pattern """ & re.Pattern & _
 """ wasn't found within the following text: " & _
 vbcrlf & vbcrlf & vbtab & """" & strResults & """"
Else
 ' Now that we know the text we have contains the pattern
 ' we're looking for, let's execute the regular
 ' expression so that we can iterate through the pattern
 ' matches that are available within the text.
 Set matches = re.Execute(strResults)
 For Each match In matches
 strSerial = match.SubMatches(0)
 MsgBox "Serial number extracted as: " & strSerial
 Next
End If

More detailed documentation of regular expression syntax can be found within Microsoft’s
online “VBScript Language Reference” mentioned in the introduction:
http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx. Specifically, VBScript Language
Reference Objects and Collections Regular Expression (RegExp) Object
Regular Expression Object Properties and Methods Pattern Property.

http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx�

A Guide to Using VBScript in SecureCRT 54 © 2009-2010 VanDyke Software, Inc.

CChhaapptteerr 55:: SSeennddiinngg DDaattaa ttoo RReemmoottee MMaacchhiinneess
Sending data to a remote device is a fairly straightforward task once you have an assurance that the
remote machine is ready to receive data. In this chapter, you'll learn how to send plain text as well as
non-printing control codes. You'll also learn how to simulate keyboard events to simplify automating
tasks that involve function keys or mapped keyboard combinations defined within a key map file or
session options.

55..11 SSeennddiinngg PPllaaiinn TTeexxtt
Sending plain text to a remote device is as simple as using the Screen object's Send() method.
You can take advantage of the VBScript language's built-in concatenate operator (&) to combine
multiple string segments together. A full-featured example of sending plain-text commands to a
remote device is presented below.

 SSoolluutt iioonn:: RReeppeeaatt aa CCoommmmaanndd wwiitthh VVaarriiaabbllee IInnppuutt ffrroomm UUsseerr
The following script solution shows how you can send the same command repeatedly to a remote
machine, each time with different parameters based on input from the user. This example uses the
following command as an example: ping -c 2 -w 2 192.168.0.[1-5,32,45-40]. The script
will iterate through all of the ranges provided within the [] characters, sending a modified version of
the same command for each number identified within the range specified by the user. Each line
that actually causes data to be sent to the remote is indicated in bold typeface.

' SendCommandWithVariableInputFromUser.vbs
'
' Prompts user for a command that may include a variable range (defaults to
' "ping -c 2 -w 2 192.168.0.[1-5,32,45-40]", as an example).
'
' Once a command is entered, a different instance of each command for the range
' provided is sent to the remote machine. For example, if the command specified
' by the user was "ping -c 2 -w 2 192.168.0.[1-5]", then the following commands
' would be sent to the remote machine:
' ping -c 2 -w 2 192.168.0.1
' ping -c 2 -w 2 192.168.0.2
' ping -c 2 -w 2 192.168.0.3
' ping -c 2 -w 2 192.168.0.4
' ping -c 2 -w 2 192.168.0.5
'
' Although this example requires an active connection, one could modify this
' example script to first connect to a session and then prompt the user for the
' command "template".

'~~~
Sub Main()

 If Not crt.Session.Connected Then
 crt.Dialog.MessageBox _
 "This script was designed to be launched after" & vbcrlf & _
 "a connection has already been made. Please" & vbcrlf & _
 "establish a connection prior to running this" & vbcrlf & _
 "script."
 Exit Sub
 End If

 ' Change the strPrompt variable to match the prompt you expect to see on the
 ' screen indicating that each command has been completed and the remote is
 ' ready to receive the next cmd.
 strPrompt = "] -->"

A Guide to Using VBScript in SecureCRT 55 © 2009-2010 VanDyke Software, Inc.

 strCmd = "ping -c 2 -w 2 192.168.0.[1-5,32,45-40]"
 strCmd = crt.Dialog.Prompt(_
 "Enter the IP range to target for ping testing:", _
 "Specify Ping Target IP Address/Range", _
 strCmd)
 If strCmd = "" Then Exit Sub

 ' Check to see if a range was ever included in the input from the user:
 If Instr(strCmd, "[") = 0 Then
 ' Range was not specified, simply issue the whole command provided
 crt.Screen.Send strCmd & vbcr
 Else
 ' A range was specified. Iterate through the range specified, sending
 ' a separate command for each interval in the range:

 ' First, detect the range specified in the command instructions provided
 ' by the end user:
 nPosRangeStart = Instr(strCmd, "[")
 nPosRangeClose = Instr(strCmd, "]")
 If nPosRangeClose = 0 Then
 crt.Dialog.MessageBox _
 "Didn't find expected close bracket for range specification."
 Exit Sub
 End If
 strRange = Mid(strCmd, _
 nPosRangeStart + 1,
 Len(strCmd) - nPosRangeStart - 1)

 ' Next, separate out the command part from the range
 strCmdLeft = Left(strCmd, Instr(strCmd, "[") - 1)
 strCmdRight = Mid(strCmd, Instr(strCmd, "]") + 1)

 ' Next, iterate through all comma-separated sub-ranges
 vSubRanges = Split(strRange, ",")
 For Each subRange In vSubRanges
 ' Detect whether or not we have just a number or a <start-end> pattern
 If Instr(subRange, "-") = 0 Then
 ' Just send the number as-is for this command
 crt.Screen.Send strCmdLeft & subRange & strCmdRight & vbcr
 crt.Screen.WaitForString strPrompt
 Else
 ' Handle the range as specified, for example: 1-5
 ' Get the start and end range numbers
 vElements = Split(subRange, "-")
 nStart = vElements(0)
 nEnd = vElements(1)

 ' Handle cases where the range might be specified in reverse order,
 ' such as 50-48, compared to 48-50...
 If nStart <= nEnd Then
 ' Increasing range (e.g., 1-5)
 For nIndex = nStart To nEnd
 ' Send the current command to the remote
 crt.Screen.Send strCmdLeft & nIndex & strCmdRight & vbcr
 ' Wait for the command to complete (the prompt should appear)
 ' before continuing on with the next command
 crt.Screen.WaitForString strPrompt
 Next
 Else
 ' Decreasing range (e.g., 5-1)
 For nIndex = nStart To nEnd Step -1
 ' Send the current command to the remote

A Guide to Using VBScript in SecureCRT 56 © 2009-2010 VanDyke Software, Inc.

 crt.Screen.Send strCmdLeft & nIndex & strCmdRight & vbcr
 ' Wait for the command to complete (the prompt should appear)
 ' before continuing on with the next command
 crt.Screen.WaitForString strPrompt
 Next
 End If 'subRange decreasing or increasing?
 End If 'subRange contains a "-"?
 Next
 End If 'Command contains a range [x-y]?
End Sub

55..22 SSeennddiinngg CCoonnttrrooll CCooddeess
When you find it necessary to send control codes or escape sequences to the remote, you can use
the VBScript built-in Chr() method to achieve the desired results. For example, if you need to send
an ASCII Ctrl+A control character to the remote, you would use crt.Screen.Send Chr(1).

Although there is an ASCII table in the SecureCRT help that will assist you in determining the codes
required to send non-printing control sequences to a remote device, you might consider using the
following "Control()" function example, or the SendKeys() method described later on in this chapter,
as a way of facilitating the process more efficiently.

'~~~
Function Control(character)
 ' The following formula is useful for this task:
 ' ASCIIControlCode = chr(asc(<UPPERCASE character>) - 64)
 '
 ' For example, Ctrl+@ is really an ASCII 0 (NUL), Ctrl+A is really
 ' an ASCII 1 (SOH), and so on...

 ' Since our formula only works if upper-case characters are used,
 ' we'll up-case any lower-case characters that are provided:
 character = UCase(character)

 ' In VBScript, the return value of a function is set by
 ' assigning the name of the function to the value that
 ' should be returned.
 Control = chr(asc(character) - 64)
End Function

'~~~
Sub Main()
 ' Send all non-printing control characters to the remote:
 crt.Screen.Send Control("@") ' chr(0)
 crt.Screen.Send Control("A") ' chr(1)
 crt.Screen.Send Control("B") ' chr(2)
 crt.Screen.Send Control("C") ' chr(3)
 crt.Screen.Send Control("D") ' chr(4)
 crt.Screen.Send Control("E") ' chr(5)
 crt.Screen.Send Control("F") ' chr(6)
 crt.Screen.Send Control("G") ' chr(7)
 crt.Screen.Send Control("H") ' chr(8)
 crt.Screen.Send Control("I") ' chr(9)
 crt.Screen.Send Control("J") ' chr(10)
 crt.Screen.Send Control("K") ' chr(11)
 crt.Screen.Send Control("L") ' chr(12)
 crt.Screen.Send Control("M") ' chr(13)
 crt.Screen.Send Control("N") ' chr(14)
 crt.Screen.Send Control("O") ' chr(15)

A Guide to Using VBScript in SecureCRT 57 © 2009-2010 VanDyke Software, Inc.

 crt.Screen.Send Control("P") ' chr(16)
 crt.Screen.Send Control("Q") ' chr(17)
 crt.Screen.Send Control("R") ' chr(18)
 crt.Screen.Send Control("S") ' chr(19)
 crt.Screen.Send Control("T") ' chr(20)
 crt.Screen.Send Control("U") ' chr(21)
 crt.Screen.Send Control("V") ' chr(22)
 crt.Screen.Send Control("W") ' chr(23)
 crt.Screen.Send Control("X") ' chr(24)
 crt.Screen.Send Control("Y") ' chr(25)
 crt.Screen.Send Control("Z") ' chr(26)
 crt.Screen.Send Control("[") ' chr(27)
 crt.Screen.Send Control("\") ' chr(28)
 crt.Screen.Send Control("]") ' chr(29)
 crt.Screen.Send Control("^") ' chr(30)
 crt.Screen.Send Control("_") ' chr(31)
End Sub

55..33 SSiimmuullaattiinngg KKeeyybbooaarrdd EEvveennttss
As you may have seen throughout many of the examples in this document, simulating an Enter
keyboard event is done by using a crt.Screen.Send vbcr command. While this works in many
cases, you might need to simulate pressing a function key that works to do what you need on the
remote system. For example, you may not know the low-level control codes that are actually sent
to the remote system when the F12 key is pressed, but you know it's what the remote requires and
you want to simulate the F12 key being pressed from within your script. Perhaps in a different
situation, you want to take advantage of a key map setup that already contains a specific sequence
of characters to send to the remote.

In either case, you can take advantage of the SendKeys() method available as part of the Screen
object in SecureCRT versions 6.1 and newer to simulate actual keyboard events that you would
normally press manually within SecureCRT. For example, if you have mapped the
Ctrl+Shift+Alt+F7 keyboard combination to send a particular string of commands, you can invoke
this pre-defined keyboard "macro" using the following line of code:

crt.Screen.SendKeys "^+%{F7}"

SecureCRT's SendKeys() method follows the patterns established by the WScript built-in
WshShell.SendKeys() method in terms of the string values required to indicate the keystroke(s)
you want to simulate. However, there are some differences between SecureCRT's SendKeys()
method and WshShell's SendKeys() method:

 SecureCRT allows you to simulate pressing the Prt Scn (Print Screen) button (the
WshShell.SendKeys() method does not allow this). Note that unless mapped otherwise,
pressing the Prt Scn key will toggle the auto print functionality.

 SecureCRT allows you to distinguish between pressing keys on the normal keypad vs. the
number keypad (e.g., "0" vs. "{NUM_0}", and "{+}" vs. "{NUM_+}").

 SecureCRT allows you to include a numeric repeating indicator for keyboard combinations,
not just single characters. For example: crt.Screen.SendKeys("^{f 50}") will result in
50 Ctrl+F keyboard events.

As per the pattern established by WScript's SendKeys() method, the following characters have
special meaning when included within a SendKeys string:

 + The plus sign indicates a Shift modifier (e.g., Shift+F1 is represented as

A Guide to Using VBScript in SecureCRT 58 © 2009-2010 VanDyke Software, Inc.

"+{F1}"). To simulate a literal '+' key, use "{+}" or "{NUM_+}" to specify
a normal keypad "+" or a number keypad "+" key press event, respectively.

 ^ The caret indicates a Ctrl modifier (e.g., Ctrl+C is represented as "^C").
To simulate a literal "^" key, you could use "{^}" or "+6".

 % The percent sign indicates an Alt modifier (e.g., Alt+X is represented as
"%X"). To simulate a literal "%" key, you could use "{%}" or "+5".

 ~ The tilde character represents pressing the Enter key. To simulate a literal
"~" key, you would use "{~}".

A table describing the special keys and the corresponding string representations SendKeys()
expects is found in the SecureCRT help within the Screen object's reference. A version of that
same table is included in this document as a convenience:

Key String Argument for SendKeys()
BACKSPACE {BACKSPACE}, {BS}, or {BKSP}
BREAK {BREAK}
CAPS LOCK {CAPSLOCK}
DEL or DELETE {DELETE} or {DEL}
DOWN ARROW {DOWN}
END {END}
ENTER {ENTER} or ~
ESC {ESC}
HELP {HELP}
HOME {HOME}
INS or INSERT {INSERT} or {INS}
LEFT ARROW {LEFT}
NUM LOCK {NUMLOCK}
PAGE DOWN {PGDN}
PAGE UP {PGUP}
PRINT SCREEN {PRTSC}
RIGHT ARROW {RIGHT}
SCROLL LOCK {SCROLLLOCK}
TAB {TAB}
UP ARROW {UP}
F1, F2, ... F16 {F1}, {F2}, ... {F16}
0, 1, ... 9 on number pad {NUM_0}, {NUM_1}, ... {NUM_9}
. (dot) on number pad {NUM_.}
/ (slash) on number pad {NUM_/}
* (asterisk) on number pad {NUM_*}
- (minus) on number pad {NUM_-}
+ (plus) on number pad {NUM_+}
ENTER on number pad {NUM_ENTER}
HOME on number pad {NUM_HOME}
PAGE UP on number pad {NUM_PGUP}
END on number pad {NUM_END}
PAGE DOWN on number pad {NUM_PGDN}
UP ARROW on number pad {NUM_UP}
DOWN ARROW on number pad {NUM_DOWN}

A Guide to Using VBScript in SecureCRT 59 © 2009-2010 VanDyke Software, Inc.

LEFT ARROW on number pad {NUM_LEFT}
RIGHT ARROW on number pad {NUM_RIGHT}

 SSoolluutt iioonn:: AAdddd ""nnoo"" ttoo EEaacchh SSeelleecctteedd LLiinnee aanndd SSeenndd ttoo RReemmoottee
For network administrators who spend a lot of time configuring devices, this solution could result in
significant time savings. For example, consider the following lines selected within the SecureCRT
terminal window:

http server enable
http 192.168.1.0 255.255.255.0 inside
floodguard enable
telnet 0.0.0.0 0.0.0.0 inside

Running this example solution script (code provided below) with the above lines selected within the
SecureCRT terminal window would cause the following lines to be sent to the remote system:

no http server enable
no http 192.168.1.0 255.255.255.0 inside
no floodguard enable
no telnet 0.0.0.0 0.0.0.0 inside

Note also that the script code "toggles" the value of the "no"; if it already exists as the first part of
the line, it will be removed. As another example, consider the following lines selected within the
SecureCRT terminal window:

no http server enable
no http 192.168.1.0 255.255.255.0 inside
floodguard enable
telnet 0.0.0.0 0.0.0.0 inside

Running the script with the above lines selected would cause the following lines to be sent to the
remote:

http server enable
http 192.168.1.0 255.255.255.0 inside
no floodguard enable
no telnet 0.0.0.0 0.0.0.0 inside

This example script code also doesn't require the text be selected within the SecureCRT terminal
window. The script code will ask the user if the clipboard should be used in the event that there
isn't any text selected within the current SecureCRT terminal window. This allows you to copy lines
from another SecureCRT tab/window or even another application and then send the modified
versions of these lines to the remote when the script is launched.

' ToggleNoForEachLineInSelectionAndPaste.vbs
'
' Description:
' This script demonstrates how to prepend or remove "no " to or from the
' beginning of lines selected within the SecureCRT screen, then paste the "no"
' versions of the lines back into SecureCRT. Useful for Network
' Administrators who configure Cisco routers and switches and find the need to
' do this "no" toggling frequently.
'
'

A Guide to Using VBScript in SecureCRT 60 © 2009-2010 VanDyke Software, Inc.

' This script will only work in SecureCRT 6.1 and later, as the
' Screen.Selection object isn't available in earlier versions of SecureCRT.
'
' Usage:
' 1) Select lines within the SecureCRT Window or copy them to the clipboard
' from another application.
' 2) Run this script. Lines that already have "no " at the beginning of them
' will be sent to the remote with the "no" removed. Lines that do not
' have a "no " at the beginning will be sent to the remote with a "no "
' added to the front of the line.

' ~~
' Constants
' ~~
' Button parameter options
Const BUTTON_YESNO = 4 ' Yes and No buttons

' Handled MessageBox() return values
Const IDYES = 6 ' Yes button clicked

' ~~
Sub Main()
 ' Find out which tab we're running in...
 Set objTab = crt.GetScriptTab

 ' Pull the selected text into a variable
 strLines = Trim(objTab.Screen.Selection)

 ' Make sure we actually have some text to work with... if not, exit the
 ' script with a message to that effect.
 If strLines = "" Then
 If crt.dialog.MessageBox(_
 "There isn't any text selected within the SecureCRT screen." & _
 vbcrlf & vbcrlf & _
 "Would you like to use the text within the clipboard instead?", _
 """No""-ify Text Script", _
 BUTTON_YESNO) <> IDYES Then Exit Sub

 ' If there wasn't selected text and the user answers yes to the above
 ' prompt, pull the text from the clipboard, and let's work with it
 ' instead.
 strLines = crt.Clipboard.Text
 End If

 ' Split up the selected text into separate lines.
 ' First, let's standardize the text by making sure
 ' each line is separated by only a carriage return.
 strLines = Replace(strLines, vbcrlf, vbcr)
 strLines = Replace(strLines, vblf, vbcr)
 ' Now, use Split() to create an array out of each of the lines.
 vLines = Split(strLines, vbcr)

 ' Prepend (or remove) "no " to (or from) each line & send to the remote.
 For Each strLine In vLines
 ' Remove leading and trailing spaces
 strLine = Trim(strLine)

 ' Ignore empty lines
 If strLine <> "" Then

 ' If the line already has a "no " at the front, remove it
 If Left(strLine, 3) = "no " Then
 objTab.Screen.Send Trim(Mid(strLine, 3)) & vbcr

A Guide to Using VBScript in SecureCRT 61 © 2009-2010 VanDyke Software, Inc.

 Else
 ' Otherwise, go ahead and prepend "no " to the line
 objTab.Screen.Send "no " & strLine & vbcr
 End If
 End If
 Next

End Sub

A Guide to Using VBScript in SecureCRT 62 © 2009-2010 VanDyke Software, Inc.

CChhaapptteerr 66:: GGeetttt iinngg IInnffoorrmmaatt iioonn ffrroomm tthhee EEnndd UUsseerr
Earlier in this document you might have noticed a few examples that show how to prompt for
information: InputBox and MsgBox. This chapter will present these functions in more detail, and
address a few additional mechanisms that can be employed to prompt end users for information.
Examples of how to do simple input validation will also be provided.

The most readily-available means of prompting the end user for information are as follows:

 MsgBox (VBScript built-in)
 WshShell.Popup (VBScript built-in)
 crt.Dialog.MessageBox (SecureCRT built-in)
 InputBox (VBScript built-in)
 crt.Dialog.Prompt (SecureCRT built-in)

Although a tiny bit more complicated (notice the sarcasm?), another way of prompting for information
involves using the InternetExplorer.Application ActiveX object to build up a web-page form on
the fly. This is currently the more flexible and powerful method, but may be overkill if your prompting
needs are not that complicated.

This chapter will begin by providing examples of the more simple cases of prompting for input, and
conclude with showing an example of prompting for information by means of an on-the-fly custom
dialog created using the InternetExplorer.Application ActiveX object.

66..11 PPrroommppttiinngg ffoorr SSiimmppllee RReessppoonnsseess:: YYeess,, NNoo,, OOKK,, CCaanncceell ,, eettcc..
For simple program logic control such as presenting basic yes/no options to the user, the following
methods do the job well:

 MsgBox (VBScript built-in)
 crt.Dialog.MessageBox (SecureCRT built-in)
 WshShell.Popup (VBScript built-in)

MMssggBBooxx
MsgBox is a native VBScript function that provides the foundation upon which the basic "Hello
World" example VBScript code is written:

MsgBox "Hello World!"

The default when calling MsgBox is to display only an OK button within a window having a blank
title. Different variations of behavior can be achieved by changing the parameters supplied to
the function. The general syntax for the MsgBox function is as follows:

MsgBox(strPrompt[, nButtons][, strTitle])

A Guide to Using VBScript in SecureCRT 63 © 2009-2010 VanDyke Software, Inc.

The VBScript language interpreter provides built-in constants such as vbYes, vbNo,
vbYesNoCancel, etc., that help control the appearance and behavior of the MsgBox window.
These constants are documented within the WScript Help referenced earlier. Here is an
example of a function that can be used to display information to the end user and ask if they
would like to continue with script operation or cancel the script:

Sub Main()
 ' ...

 If Not Continue("Do you wish to continue?", "Continue?") Then Exit Sub

 ' ...

 If Not Continue("The time is now: " & _
 Time & _
 ", do you wish to continue?", _
 "How about now?") Then Exit Sub

 ' ...

 MsgBox "Reached the end of the script."
End Sub

'~~
Function Continue(strMsg, strTitle)
 ' Set the buttons as Yes and No, with the default button
 ' to the second button ("No", in this example)
 nButtons = vbYesNo + vbDefaultButton2

 ' Set the icon of the dialog to be a question mark
 nIcon = vbQuestion

 ' Display the dialog and set the return value of our
 ' function accordingly
 If MsgBox(strMsg, nButtons + nIcon, strTitle) <> vbYes Then
 Continue = False
 Else
 Continue = True
 End If
End Function

Running the script above presents windows displayed in the following order, assuming you've
chosen "Yes" at each prompt:

… …

If you need to present a user with three separate options, and perform a different action for each
option, you could use MsgBox to present these options to the end user and take action based
on the response provided. For example, consider the following code:

http://msdn.microsoft.com/en-us/library/sfw6660x(VS.85).aspx�

A Guide to Using VBScript in SecureCRT 64 © 2009-2010 VanDyke Software, Inc.

Sub Main()

 ' Display a message to the end user that presents 3 different options.
 ' Try to explain that each button maps to a different action.
 strMsg = "Please choose from one of the options below." & vbcrlf & _
 vbcrlf & _
 "Press" & vbtab & "Abort" & vbtab & "... to send 'ls -al'" & _
 vbcrlf & _
 "Press" & vbtab & "Retry" & vbtab & "... to send 'ps -eaf'" & _
 vbcrlf & _
 "Press" & vbtab & "Ignore" & vbtab & "... when you are done."

 Do
 ' Set the buttons as Abort, Retry, and Ignore, with the default button
 ' to the second button ("Retry", in this example)
 nButtons = vbAbortRetryIgnore + vbDefaultButton2

 ' Set the icon of the dialog to be a question mark
 nIcon = vbQuestion

 ' Display the dialog and capture the return value so that we can
 ' act upon it.
 nResult = MsgBox(strMsg, nButtons + nIcon, "Please Choose One")
 Select Case nResult
 Case vbAbort
 crt.Screen.Send "ls -al" & vbcr

 Case vbRetry
 crt.Screen.Send "ps -eaf" & vbcr

 Case vbIgnore
 MsgBox "User Exited Script."
 Exit Do
 End Select
 Loop

End Sub

Running the script code above would produce a window that looks like the following:

It isn't the most user-friendly interface, and confusion can be generated by presenting a dialog
with Abort, Retry, and Ignore buttons that really mean something different depending on how
your script wishes to use them. Depending on your user base, you may want to present various
options in a more user-friendly manner. In such cases where a more complete set of GUI
options are needed, consider creating a custom dialog using the InternetExplorer.Application
ActiveX object as described below.

A Guide to Using VBScript in SecureCRT 65 © 2009-2010 VanDyke Software, Inc.

ccrrtt..DDiiaalloogg..MMeessssaaggeeBBooxx
crt.Dialog.MessageBox functions in a manner very similar to the VBScript MsgBox built-in
function. Arguments are provided in a slightly different order, and with the exception of one
noticeable difference, the behavior is nearly identical to MsgBox. SecureCRT provides this
function for the benefit of users that aren't using VBScript as their scripting language. JScript,
for example, doesn't have a MsgBox equivalent, so those who find themselves using JScript can
take advantage of SecureCRT's crt.Dialog.MessageBox function to present the user with
simple prompts.

The syntax for crt.Dialog.MessageBox is not the same as MsgBox. Note that the order of
the last two function arguments is reversed in comparison to VBScript's built-in MsgBox
function:

crt.Dialog.MessageBox(strMessage [, strTitle [, nButtons]])

The earlier code listings for MsgBox can be rewritten to use crt.Dialog.MessageBox by
simply replacing MsgBox with crt.Dialog.MessageBox and rearranging the order of the last
two arguments. For example, the earlier "Continue" example using crt.Dialog.MessageBox
is displayed below:

Sub Main()
 ' ...

 If Not Continue("Do you wish to continue?", "Continue?") Then Exit Sub

 ' ...

 If Not Continue("The time is now: " & _
 Time & _
 ", do you wish to continue?", _
 "How about now?") Then Exit Sub

 ' ...

 crt.Dialog.MessageBox "Reached the end of the script."
End Sub

'~~
Function Continue(strMsg, strTitle)
 ' Set the buttons as Yes and No, with the default button
 ' to the second button ("No", in this example)
 nButtons = vbYesNo + vbDefaultButton2

 ' Set the icon of the dialog to be a question mark
 nIcon = vbQuestion

 ' Display the dialog and set the return value of our
 ' function accordingly
 If crt.Dialog.MessageBox(strMsg, strTitle, nButtons + nIcon) <> vbYes Then
 Continue = False
 Else
 Continue = True
 End If
End Function

Notice that all of the built-in constants (vbYes, vbNo, vbQuestion, etc.) still work for
crt.Dialog.MessageBox just as they did for VBScript's MsgBox function. Although the

A Guide to Using VBScript in SecureCRT 66 © 2009-2010 VanDyke Software, Inc.

order of the arguments is different, the meaning of the arguments still remains the same
between crt.Dialog.MessageBox and VBScript's MsgBox. The main difference (other than
syntax) between MsgBox and crt.Dialog.MessageBox is that the window spawned by a call
to MsgBox always appears in the center of the desktop associated with the primary monitor,
whereas the window spawned by a call to SecureCRT's crt.Dialog.MessageBox always
appears centered within the SecureCRT application window.

Also of note in terms of difference in behavior compared to MsgBox,
crt.Dialog.MessageBox provides a default window title of "SecureCRT", rather than leaving
the window title blank.

VBScript's MsgBox (no title; centered on desktop, rather than on SecureCRT’s application window)

A Guide to Using VBScript in SecureCRT 67 © 2009-2010 VanDyke Software, Inc.

crt.Dialog.MessageBox (default title; centered on SecureCRT’s main application window)

WWsshhSShheellll..PPooppuupp
WshShell.Popup is a built-in VBScript function that is similar to MsgBox, but it allows for
specification of a timeout parameter that causes the dialog to be automatically dismissed after a
specified number of seconds if there is no user action taken. This function can be useful in
situations where you may want to prompt for a choice, but take the default action if no response
is given within the timeframe specified. One such example is a scenario in which you have an
automated script that performs the same command repeatedly, providing an opportunity to
interactively cancel the script every tenth time the command is sent. A prompt is displayed
asking if execution of the script should continue. After five seconds, if a response is not
provided by the end user, the default action is taken to continue with the script.

' Number of times the command should be sent to the remote before prompting if
' the script should continue:
g_nMaxRepetitions = 10

' The number of seconds the continuation prompt should appear before being
' dismissed automatically.
g_nTimeoutSeconds = 5

' The number of seconds to wait between each time the command is sent

A Guide to Using VBScript in SecureCRT 68 © 2009-2010 VanDyke Software, Inc.

g_nCommandDelaySeconds = 2

' The command we'll be sending to the remote every g_nCommandDelaySeconds.
g_strCommand = "top -n 1"

' Reference to the WshShell object that will provide the Popup() function
Set g_objShell = CreateObject("WScript.Shell")

'~~
Sub Main()
 nCounter = g_nMaxRepetitions
 Do
 If nCounter = 0 Then
 If Not Continue("Do you wish to continue script execution?", _
 "Continue?") Then Exit Do

 ' Reset the repetition counter
 nCounter = g_nMaxRepetitions
 Else
 ' Before sending our command(s), let's check to ensure that we have
 ' an active connection
 If Not crt.Session.Connected Then
 Do
 If Continue("Connection lost. Should we reconnect?", _
 "Reconnect?") <> True Then Exit Sub

 ' crt.Session.Connect will perform a reconnect (this script
 ' assumes that it was launched with an active connection
 ' already present).
 On Error Resume Next
 crt.Session.Connect
 nError = Err.Number
 strErr = Err.Description
 On Error Goto 0
 If nError = 0 Then Exit Do
 Loop
 End If

 crt.Screen.Send "top -n 1" & vbcr

 nCounter = nCounter - 1

 ' Delay for a specified number of seconds between commands.
 ' Since crt.Sleep takes MS, convert the variable from Seconds...
 crt.Sleep g_nCommandDelaySeconds * 1000
 End If

 Loop
End Sub

'~~
Function Continue(strMsg, strTitle)
 ' Set the buttons as Yes and No, with the default button
 ' to the Second button ("Yes", in this example)
 nButtons = vbYesNo + vbDefaultButton

 ' Set the icon of the dialog to be a question mark
 nIcon = vbQuestion

 ' Display the dialog and set the return value of our
 ' function accordingly
 nResult = g_objShell.Popup(strMsg, _
 g_nTimeoutSeconds, _

A Guide to Using VBScript in SecureCRT 69 © 2009-2010 VanDyke Software, Inc.

 strTitle, nButtons + nIcon)
 If nResult = vbNo Then
 Continue = False
 Else
 Continue = True
 End If
End Function

66..22 PPrroommppttiinngg ffoorr AArrbbiittrraarryy TTeexxtt IInnppuutt
If prompting the end user for input via a simple button push isn't sufficient, and you need to present
more of a "fill in the blank" prompt, this section will explain a couple of methods that can be used to
accomplish your goal. Once you've received input from the end user, you might also want to
validate it to ensure that it is the right type of data, within a certain range, or meets your other
criteria.

IInnppuuttBBooxx
InputBox is a native VBScript function that presents a simple window allowing input of
arbitrary text data. Since the first three function parameters for InputBox match the order and
meaning of the first three function parameters for crt.Dialog.Prompt, you may want to
consider always using crt.Dialog.Prompt since it allows for hiding user input – a feature
that works very well when prompting for sensitive information such as a user's password.
Although the functionality of InputBox is almost identical to crt.Dialog.Prompt, the
behavior between the two functions differs in the following areas:

 SecureCRT's crt.Dialog.Prompt function allows you to hide the text that the end
user types, thereby facilitating the entry of passwords and other sensitive information
that needs to be hidden from the curiosity of those who might be looking over your
shoulder.

 The fourth and fifth parameters allowed by InputBox allow you to control the
coordinates of the upper left-hand corner of the window that is displayed, so you can
position it where you want on the screen. SecureCRT's crt.Dialog.Prompt always
displays the input window centered within the corresponding SecureCRT application
window.

Here's an example of using VBScript's InputBox function to prompt for user text input that is
then used to attempt a connection to a specified host:

Sub Main()

 strHost = InputBox(_
 "Please specify the host to connect:", _
 "Target Host?", _
 "192.168.0.1")
 If strHost = "" Then Exit Sub

 strUsername = InputBox(_
 "Please enter your username:", _
 "Username?")
 If strUsername = "" Then Exit Sub

 nRetryAttempts = InputBox(_
 "How many connection attempts should be made?", _
 "Retry Count?", _
 3)
 If nRetryAttempts = "" Then Exit Sub

A Guide to Using VBScript in SecureCRT 70 © 2009-2010 VanDyke Software, Inc.

 nRetryDelaySeconds = InputBox(_
 "How many seconds between retry attempts?", _
 "Retry Delay?", _
 1)
 If nRetryDelaySeconds = "" Then Exit Sub

 strConnectString = "/SSH2" & _
 " /L " & strUsername & _
 " " & strHost

 If Connect(strConnectString, _
 nRetryAttempts, _
 nRetryDelaySeconds) Then
 crt.Dialog.MessageBox "Successfully connected to " & strHost
 Else
 crt.Dialog.MessageBox "Failed to connect to " & strHost
 Exit Sub
 End If

 ' Do work, now that we know we're connected to the specified host...
 ' .
 ' .
 ' .

End Sub

'~~
Function Connect(strConnectString, nRetryAttempts, nRetryDelaySeconds)
 nRetryCount = nRetryAttempts
 Do
 On Error Resume Next
 crt.Session.Connect strConnectString
 nError = Err.Number
 strErr = Err.Description
 On Error Goto 0

 If nError = 0 Then
 Connect = True
 Exit Function
 End If

 ' Convert nRetryTimeoutSeconds to MS, which is what crt.Sleep
 ' requires; delay script execution for the amount of time specified.
 crt.Sleep nRetryDelaySeconds * 1000

 nRetryCount = nRetryCount - 1
 Loop Until nRetryCount < 1
End Function

ccrrtt..DDiiaalloogg..PPrroommpptt
The list below provides a summary of the benefits crt.Dialog.Prompt offers over the
standard InputBox function provided by VBScript:

 The input window is automatically centered within SecureCRT’s main application
window.

 The title of the window is set automatically to “SecureCRT” if a title parameter isn’t
specified.

 Sensitive input (like passwords) can be hidden, preventing prying eyes from snooping
sensitive information.

A Guide to Using VBScript in SecureCRT 71 © 2009-2010 VanDyke Software, Inc.

Since SecureCRT’s crt.Dialog.Prompt function offers the ability to hide data being entered,
the script code for Sub Main() presented in the previous section can be modified to include
prompting the end user for a password, without putting the end user at risk of over-the-shoulder
onlookers.

Sub Main()

 strHost = crt.Dialog.Prompt(_
 "Please specify the host to connect:", _
 "Target Host?", _
 "192.168.0.1")
 If strHost = "" Then Exit Sub

 strUsername = crt.Dialog.Prompt(_
 "Please enter your username:", _
 "Username?")
 If strUsername = "" Then Exit Sub

 strPassword = crt.Dialog.Prompt(_
 "Please enter your password:", _
 "Password?", _
 "", _
 True)
 If strPassword = "" Then Exit Sub

 nRetryAttempts = crt.Dialog.Prompt(_
 "How many connection attempts should be made?", _
 "Retry Count?", _
 3)
 If nRetryAttempts = "" Then Exit Sub

 nRetryDelaySeconds = crt.Dialog.Prompt(_
 "How many seconds between retry attempts?", _
 "Retry Delay?", _
 1)
 If nRetryDelaySeconds = "" Then Exit Sub

 strConnectString = "/SSH2" & _
 " /L " & strUsername & _
 " /PASSWORD " & strPassword & _
 " " & strHost

 If Connect(strConnectString, _
 nRetryAttempts, _
 nRetryDelaySeconds) Then
 crt.Dialog.MessageBox "Successfully connected to " & strHost
 Else
 crt.Dialog.MessageBox "Failed to connect to " & strHost
 Exit Sub
 End If

 ' Do work, now that we know we're connected to the specified host...
 ' .
 ' .
 ' .

End Sub

A Guide to Using VBScript in SecureCRT 72 © 2009-2010 VanDyke Software, Inc.

VVaalliiddaattiinngg UUsseerr IInnppuutt
Validating user input can save time and potentially reduce frustration in the long run. For
example, in the sample script provided in the previous section, the end user is prompted for the
host to which a connection is to be made. If the end user specifies an IP address that isn’t valid,
for example, the connection attempt will fail… but not until a timeout occurs after trying to
contact the remote host.

There are a seemingly infinite variety of ways in which user-supplied information can be
validated. This section will present a couple of different approaches:

 IsNumeric() built-in VBScript function
 Regular Expressions and VBScript code

IIssNNuummeerriicc
If you’re prompting the end user for a number, the VBScript built-in IsNumeric function can
be used to verify that the data provided is actually a number. Consider the following
example that demonstrates how to clone the active tab a specified number of times. Note
how the IsNumeric function is used to validate the input provided by the end user:

 SSoolluutt iioonn:: CClloonnee CCuurrrreenntt TTaabb MMuulltt iippllee TTiimmeess
' CloneCurrentTabMultipleTimes.vbs

' Description:
' This example script demonstrates how to create multiple cloned tabs based
' on user input.
'
' Demonstrates:
' - How to get the script tab.
' - How to get the protocol used for connection by querying session options.
' - One way of prompting for and validating numerical input is between a
' range of numbers.
' - How to clone an active tab.

Sub Main()

 Set objTab = crt.GetScriptTab

 If objTab.Session.Connected <> True Then
 crt.Dialog.MessageBox "Not connected. Current tab must be connected" & _
 " with Telnet or SSH2."
 Exit Sub
 Else
 strProtocol = objTab.Session.Config.GetOption("Protocol Name")
 If strProtocol <> "Telnet" And strProtocol <> "SSH2" Then
 crt.Dialog.MessageBox "Invalid protocol. Current tab must be " & _
 "connected with Telnet or SSH2."
 Exit Sub
 End If
 End If

 Dim nMaxClones
 nMaxClones = 20

 Dim nCloneCount
 nCloneCount = 8

 Do
 nCloneCount = crt.Dialog.Prompt(_

A Guide to Using VBScript in SecureCRT 73 © 2009-2010 VanDyke Software, Inc.

 "Current tab is: " & objTab.Caption & vbcrlf & _
 vbcrlf & _
 "How many clones would you like to make?", _
 "Clone Current Tab", _
 nCloneCount)
 If nCloneCount = "" Then Exit Sub
 If Not IsNumeric(nCloneCount) Then
 crt.Dialog.MessageBox "Invalid number. Please enter a number " & _
 "between 1 and " & nMaxClones
 Else
 ' Convert user-supplied data to a number so we can safely perform
 ' comparisons.
 nCloneCount = CInt(nCloneCount)
 If (nCloneCount >= 1) And (nCloneCount <= nMaxClones) Then
 Exit Do
 Else
 crt.Dialog.MessageBox "Number out of range. Please enter a " & _
 "number between 1 and " & nMaxClones
 End If
 End If

 Loop

 For nIndex = 1 To nCloneCount
 objTab.Clone
 crt.Sleep 50
 Next
End Sub

RReegguullaarr EExxpprreessssiioonnss
You may recognize regular expressions from earlier reading in section 4.3, where the topic
of parsing data received from the remote was addressed. Because regular expressions are
pattern-matching instructions, they can also be used as a mechanism for some types of end
user input validation.

Regular expression syntax for use with the RegExp object native to VBScript is documented
as part of the WScript56.chm file available for download from Microsoft, as well as in online
format on the MSDN web site:
 http://msdn.microsoft.com/en-us/library/1400241x(VS.85).aspx

One example of using a regular expression to validate user input is checking to see if a
user-supplied IP address is valid. Here’s an example that demonstrates how you can use a
regular expression to determine whether or not end user input represents a valid IP address:

Sub Main()
 ' Set up a default value to use when we prompt the end user.
 strAddress = "192.168.0.1"

 Set re = New RegExp
 ' Set up a pattern that starts at the beginning ("^"), and looks for a
 ' digit that's between 1 and 3 characters long ("\d{1,3}"), followed by
 ' a dot character ("\.") (repeated again 3 times, but the last one
 ' doesn't have a trailing dot character), followed immediately by the
 ' end of the input ("$"):
 re.Pattern = "^(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})$"

 ' This loop allows us to continue prompting for valid input until either

http://www.microsoft.com/downloads/details.aspx?FamilyId=01592C48-207D-4BE1-8A76-1C4099D7BBB9�
http://msdn.microsoft.com/en-us/library/1400241x(VS.85).aspx�

A Guide to Using VBScript in SecureCRT 74 © 2009-2010 VanDyke Software, Inc.

 ' the user cancels, or provides a valid IP address.
 Do
 strAddress = crt.Dialog.Prompt(_
 "Please specify an IPv4 address", _
 "Enter IP Address", _
 strAddress)
 If strAddress = "" Then Exit Sub

 Set matches = re.Execute(strAddress)

 If matches.Count < 1 Then
 MsgBox "Invalid IPv4 address entered!"
 Else
 ' Now check to see if each octet is within a valid range
 bValid = True
 For Each nOctet In matches(0).Submatches
 If nOctet < 0 Or nOctet > 255 Then
 crt.Dialog.MessageBox _
 "Invalid IPv4 address entered. " & _
 "Each octet must be >= 0 and <= 255."
 bValid = False
 End If
 Next
 If bValid Then Exit Do
 End If
 Loop

 crt.Dialog.MessageBox _
 "Congratulations! You entered a valid IPv4 address: " & strAddress
End Sub

You may notice that in the example above, the validation isn’t done 100% by means of a
regular expression. The regular expression pattern simply validates that the pattern of 1-3
numbers ("\d{1,3}"), followed by a ‘.’ character ("\.") is repeated 3 times, followed by
another 1-3 numbers. If this pattern is found, then a further check is done via VBScript code
to ensure that each octet is within a valid range for IPv4 addresses. If desired, the complete
validation could be done by creating a more complex regular expression pattern to be
matched. However, depending on the pattern you are attempting to match, it may be much
more difficult to construct a pattern that correctly matches the desired expression. The
remainder of this section might not only a good example of how to build up a regular
expression pattern, but may also serve as an example of how difficult it can be to match
certain patterns solely through the use of a regular expression.

To create a regular expression that matches any number between 0 and 255, you'll need to
start with a simple pattern expression and build it up piece-by-piece until you arrive at the
complex pattern that matches all possible valid data. Here's a step-by-step explanation:

1. First, start by creating a pattern that will match single digits, between 0 and 9 so that
all octets within addresses 0.0.0.0 through 9.9.9.9 can be matched: [0-9].

2. Second, the pattern for matching numbers 10 – 99 is as follows: [1-9][0-9].

A Guide to Using VBScript in SecureCRT 75 © 2009-2010 VanDyke Software, Inc.

Combine this pattern with the previous pattern using the logical OR operator
(specified using the ASCII pipe character, "|"; this is also known as alternation, in
terms of regular expressions) to accommodate double digits 10-99 so that all octets
within addresses 0.0.0.0 through 99.99.99.99 can be matched: [1-9][0-9]|[0-9].

3. Third, the pattern for matching numbers 100-199 is as follows: 1[0-9][0-9].

Combine the 100-199 pattern with the previous pattern using the logical OR
operator, since single, double, and triple digit combinations are allows in IPv4
addresses: 1[0-9][0-9]|[1-9][0-9]|[0-9].

4. Fourth, the pattern for matching numbers 200-255 must be specified in separate

chunks: one to match numbers 200-249, and another to match numbers 250-255:

Pattern for matching 200-249: 2[0-4][0-9]
Pattern for matching 250-255: 25[0-5]

Since either pattern is legitimate, they should be combined with a logical OR
operator to match all numbers 200-255: 25[0-5]|2[0-4][0-9].

Combine this pattern with the previous patterns to match all available, legitimate
values for an IPv4 octet: 25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9].

To group the logical OR statements in the above pattern so that the octet pattern can
be combined with additional patterns, it needs to be wrapped in parentheses: (25[0-
5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9]). This pattern matches all numbers between
0 and 255.

5. The next step would be to combine the above pattern together to match 3 octets
separated by a dot character, ".", followed by a fourth octet pattern: (25[0-5]|2[0-4][0-
9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.(25[0-
5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-
9]).

Since there are three instances of an octet followed by a dot character in a legitimate
IPv4 address, the first three "duplicates" of the octet pattern followed by a dot
character can be written in shorthand as follows:

((25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.){3}

Note that the sequence of logical OR statements must be wrapped in parentheses,
otherwise, the regular expression pattern would match just a single "." character all
by itself (whether or not there was a legitimate number in front of it). The entire octet
plus trailing dot character sequence is wrapped in parentheses in order to specify
that it should appear three times, as instructed by the trailing "{3}" component of the
above pattern.

A Guide to Using VBScript in SecureCRT 76 © 2009-2010 VanDyke Software, Inc.

6. Finally, to make sure that there is nothing more or less submitted by the end user,
the pattern is bounded such that it will only match if the pattern occurs between the
beginning of a line ("^") and the end of that same line ("$"). The final pattern
specification is defined as follows: ^((25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-
9])\.){3}(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])$.

The new code for prompting for an IPv4 address (and validating it – this time using just
regular expression pattern matching) would then appear as follows:

Sub Main()
 ' Set up a default value to use when we prompt the end user.
 strAddress = "192.168.0.1"

 Set re = New RegExp
 ' Set the pattern to match only an IPv4 address
 re.Pattern = _
 "^((25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.){3}" & _
 "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])$"

 ' This loop allows us to continue prompting for valid
 ' input until either the user cancels, or provides a
 ' valid IP address.
 Do
 strAddress = crt.Dialog.Prompt(_
 "Please specify an IPv4 address", _
 "Enter IP Address", _
 strAddress)
 If strAddress = "" Then Exit Sub

 If re.Test(strAddress) <> True Then
 crt.Dialog.MessageBox "Invalid IPv4 address entered!" & _
 vbcrlf & vbcrlf & _
 "Please enter a valid IPv4 address."
 Else
 Exit Do
 End If
 Loop

 crt.Dialog.MessageBox _
 "Congratulations! You entered a valid IPv4 address: " & _
 strAddress
End Sub

You may notice that although the code above is slightly smaller than the earlier sample
code, coming up with a regular expression that met the needs of validation in this specific
case was considerably more involved and complicated than using a simple regular
expression in combination with VBScript code to do additional validation. Using a regular
expression can often be a benefit, but coming up with a usable pattern can sometimes be
quite a chore.

A Guide to Using VBScript in SecureCRT 77 © 2009-2010 VanDyke Software, Inc.

66..33 BBuuiillddiinngg CCuussttoomm DDiiaallooggss oorr FFoorrmmss
If you are a subscriber to the VanDyke Software News You Can Use newsletter, this section may
look somewhat familiar to you because portions of this chapter were published earlier in the
"Scripting Corner" of the May, 2008 newsletter.

A common need in scripting is the ability to create GUI interfaces for user interaction, such as
gathering username and password data, or displaying script output. While VBScript's MsgBox and
InputBox functions let you control simple interactions, you can create more sophisticated dialogs
using HTML code with the Internet Explorer (IE) object. This section of the scripting manual walks
you through the process of building a dialog, displaying the dialog, and handling events that occur
within the dialog.

The process of implementing a custom dialog for use with SecureCRT scripts involves the following
steps:

1. Building the GUI
2. Displaying the GUI
3. Handling UI Events

BBuuiillddiinngg tthhee GGUUII
For the purpose of this example, the dialog that you will be creating is a simple dialog with two
text fields (one of which is a password field, where input can be hidden), and two buttons. Here
is a screenshot of the example custom dialog:

The GUI interface for this custom dialog will be built using HTML code displayed through
Internet Explorer. There are two ways to store the HTML code.

 Creating an HTML file with the HTML code, or
 Dynamically specifying the HTML code within script code

The example in this section will use the second method: dynamically specifying the HTML code
within the script code. Below is an example of what this code might look like within a
SecureCRT script to build a dialog that displays fields for entering username and password, and
displays OK and Cancel buttons:

strHTMLBody = _
 "Specify username and password:" & _

http://www.vandyke.com/aboutus/news/newsletters/index.html�

A Guide to Using VBScript in SecureCRT 78 © 2009-2010 VanDyke Software, Inc.

 "<hr>" & _
 "<u>U</u>sername:" & _
 "<input name=Username AccessKey=u size=40 maxlength=512 >" & _
 "
" & _
 "<u>P</u>assword:" & _
 "<input name=Password AccessKey=p size=42 maxlength=512 " & _
 "type=password >" & _
 "<hr>" & _
 "<button name=OK AccessKey=O " & _
 "><u>O</u>K </button>" & _
 " " & _
 "<button name=Cancel AccessKey=C " & _
 "><u>C</u>ancel</button>"

DDiissppllaayyiinngg tthhee GGUUII
Displaying the GUI is accomplished by performing the following tasks:

1. Get a reference to the InternetExplorer.Application object,
2. Inject the HTML GUI code associated with the controls in our custom dialog,
3. Configure display properties of the IE window, and bring the window into view.

Here is example code that performs these three steps:

' Get a reference to IE's Application object
Set g_objIE = CreateObject("InternetExplorer.Application")
g_objIE.Offline = True
g_objIE.navigate "about:blank"

' This loop is required to allow the IE object to finish loading...
Do
 crt.Sleep 100
Loop While g_objIE.Busy

g_objIE.Document.body.Style.FontFamily = "Sans-Serif"
strHTMLBody = _
 "Specify username and password:" & _
 "<hr>" & _
 "<u>U</u>sername:" & _
 "<input name=Username AccessKey=u size=40 maxlength=512 >" & _
 "
" & _
 "<u>P</u>assword:" & _
 "<input name=Password AccessKey=p size=42 maxlength=512 " & _
 "type=password >" & _
 "<hr>" & _
 "<button name=OK AccessKey=O " & _
 "><u>O</u>K </button>" & _
 " " & _
 "<button name=Cancel AccessKey=C " & _
 "><u>C</u>ancel</button>"

' Inject the HTML code above into the IE object
g_objIE.Document.Body.innerHTML = strHTMLBody

' Prevent the MenuBar, StatusBar, AddressBar, and Toolbar from
' being displayed as part of the IE window
g_objIE.MenuBar = False
g_objIE.StatusBar = False
g_objIE.AddressBar = False

A Guide to Using VBScript in SecureCRT 79 © 2009-2010 VanDyke Software, Inc.

g_objIE.Toolbar = False

' Set the initial size of the IE window
g_objIE.height = 200
g_objIE.width = 425

' Set the title of the IE window
g_objIE.document.Title = "Authentication Credentials Prompt"
g_objIE.Visible = True

' This loop is required to allow the IE window to fully display
' before moving on
Do
 crt.Sleep 100
Loop While g_objIE.Busy

' This code brings the IE window to the foreground.
Set objShell = CreateObject("WScript.Shell")
objShell.AppActivate g_objIE.document.Title

' Once the dialog is displayed and has been brought to the
' foreground, set focus on the control of our choice...
g_objIE.Document.All("Username").Focus

If you run the script code above, you’ll notice that a window is displayed, as expected, but
nothing happens when pressing the OK and Cancel buttons. This is because the buttons aren’t
configured to allow the script code to detect when they have been pressed. The button
definitions must be modified slightly, and script code will need to be added to detect and handle
these button click events.

HHaannddlliinngg UUII EEvveennttss
There are four main components of an event handler for our custom dialog using IE:

1. A hidden variable in the HTML code (ButtonHandler in the example below; this
hidden input variable is used to store the name of the button that has been pressed)

2. OnClick action configurations for each button in the dialog to set the ButtonHandler
value to the name of the button that was pressed

3. A Do loop that waits for any change in the ButtonHandler variable
4. A Select Case code block that detects and handles each button press event

TThhee HHiiddddeenn BBuuttttoonnHHaannddlleerr VVaarriiaabbllee
This variable is included in the HTML code and is updated every time something important
happens, such as the user clicking OK or Cancel. The following HTML code for the OK and
Cancel buttons sets the value of our hidden ButtonHandler variable appropriately:

OK button definition:
 "<button name=OK AccessKey=O " & _
 "Onclick=document.all(""ButtonHandler"").value=""OK"";" & _
 "><u>O</u>K </button>" & _

Cancel button definition:
 "<button name=Cancel AccessKey=C " & _
 "Onclick=document.all(""ButtonHandler"").value=""Cancel"";" & _
 "><u>C</u>ancel</button>" & _

ButtonHandler hidden input definition:

A Guide to Using VBScript in SecureCRT 80 © 2009-2010 VanDyke Software, Inc.

The following code creates the ButtonHandler variable and sets its initial value to
"Nothing Clicked Yet" as an explicit indication that no buttons have been pressed yet:

 "<input name=ButtonHandler value=""Nothing Clicked Yet"" " & _
 "type=hidden >"

TThhee DDoo LLoooopp

The Do loop is used in the SecureCRT script to continue looping while checking the value of
the ButtonHandler variable. In the event that the IE window is closed by means other
than the Cancel button, this will be handled as well.

TThhee SSeelleecctt CCaassee
The Select Case, contained in the Do loop, is used to act on the different inputs received
from the user inside a custom dialog. Since the Do loop does not include a While statement
that would inherently exit the loop should a certain clause be met, code to exit the loop will
need to be included in the Select Case.

An example of the complete Do loop with the embedded Select Case is below:

Do
 ' If the user closes the IE window by Alt+F4 or clicking on the 'X'
 ' button, we'll detect that here, and exit the script if necessary.
 On Error Resume Next
 Err.Clear
 strNothing = g_objIE.Document.All("ButtonHandler").Value
 if Err.Number <> 0 then exit do
 On Error Goto 0

 ' Check to see which buttons have been clicked, and address each one
 ' as it's clicked.
 Select Case g_objIE.Document.All("ButtonHandler").Value
 Case "Cancel"
 ' The user clicked Cancel. Exit the loop
 g_objIE.quit
 Exit Do

 Case "OK"
 ' The user clicked OK. Act on the information in the
 ' Username and Password fields.
 ' Capture data from each field in the dialog...
 strUsername = g_objIE.Document.All("Username").Value
 strPassword = g_objIE.Document.All("Password").Value
 g_objIE.quit
 ' Now that we have closed the IE dialog, we can act on our data.
 ' For this example, we will just display the information entered
 ' in a text box.
 If crt.Dialog.MessageBox("Username provided: " & strUsername & _
 vbcrlf & vbcrlf & _
 "Would you also like to see the " & _
 "password that was entered?", _
 "Data Display", _
 vbYesNo) <> vbYes Then Exit Do

 crt.Dialog.MessageBox "Here is the password that was entered:" & _
 vbcrlf & vbtab & _
 "Password: " & strPassword

A Guide to Using VBScript in SecureCRT 81 © 2009-2010 VanDyke Software, Inc.

 Exit Do
 End Select

 ' Wait for user interaction with the dialog...
 crt.Sleep 200
Loop

TThhee CCoommpplleetteedd CCuussttoomm DDiiaalloogg CCooddee
When you put all of the pieces together, the final result will look similar to the solution code
below:

 SSoolluutt iioonn:: CCrreeaattee aa CCuussttoomm UUsseerrnnaammee aanndd PPaasssswwoorrdd IInnppuutt DDiiaalloogg

' Get a reference to IE's Application object
Set g_objIE = CreateObject("InternetExplorer.Application")
g_objIE.Offline = True
g_objIE.navigate "about:blank"

' This loop is required to allow the IE object to finish loading...
Do
 crt.Sleep 100
Loop While g_objIE.Busy

g_objIE.Document.body.Style.FontFamily = "Sans-Serif"
strHTMLBody = _
 "Specify username and password:" & _
 "<hr>" & _
 "<u>U</u>sername:" & _
 "<input name=Username AccessKey=u size=40 maxlength=512 >" & _
 "
" & _
 "<u>P</u>assword:" & _
 "<input name=Password AccessKey=p size=42 maxlength=512 " & _
 "type=password >" & _
 "<hr>" & _
 "<button name=OK AccessKey=O " & _
 "Onclick=document.all(""ButtonHandler"").value=""OK"";" & _
 "><u>O</u>K </button>" & _
 " " & _
 "<button name=Cancel AccessKey=C " & _
 "Onclick=document.all(""ButtonHandler"").value=""Cancel"";" & _
 "><u>C</u>ancel</button>" & _
 "<input name=ButtonHandler value=""Nothing Clicked Yet"" " & _
 "type=hidden >"

' Inject the HTML code above into the IE object
g_objIE.Document.Body.innerHTML = strHTMLBody

' Prevent the MenuBar, StatusBar, AddressBar, and Toolbar from
' being displayed as part of the IE window
g_objIE.MenuBar = False
g_objIE.StatusBar = False
g_objIE.AddressBar = False
g_objIE.Toolbar = False

' Set the initial size of the IE window
g_objIE.height = 200
g_objIE.width = 425

' Set the title of the IE window
g_objIE.document.Title = "Authentication Credentials Prompt"

A Guide to Using VBScript in SecureCRT 82 © 2009-2010 VanDyke Software, Inc.

g_objIE.Visible = True

' This loop is required to allow the IE window to fully display
' before moving on
Do
 crt.Sleep 100
Loop While g_objIE.Busy

' This code brings the IE window to the foreground (otherwise, the window
' would appear, but it would likely be behind the SecureCRT window, not
' easily visible to the user).
Set objShell = CreateObject("WScript.Shell")
objShell.AppActivate g_objIE.document.Title

' Once the dialog is displayed and has been brought to the
' foreground, set focus on the control of our choice...
g_objIE.Document.All("Username").Focus

Do
 ' If the user closes the IE window by Alt+F4 or clicking on the 'X'
 ' button, we'll detect that here, and exit the script if necessary.
 On Error Resume Next
 Err.Clear
 strNothing = g_objIE.Document.All("ButtonHandler").Value
 if Err.Number <> 0 then exit do
 On Error Goto 0

 ' Check to see which buttons have been clicked, and address each one
 ' as it's clicked.
 Select Case g_objIE.Document.All("ButtonHandler").Value
 Case "Cancel"
 ' The user clicked Cancel. Exit the loop
 g_objIE.quit
 Exit Do

 Case "OK"
 ' The user clicked OK. Act on the information in the
 ' Username and Password fields.
 ' Capture data from each field in the dialog...
 strUsername = g_objIE.Document.All("Username").Value
 strPassword = g_objIE.Document.All("Password").Value
 g_objIE.quit
 ' Now that we have closed the IE dialog, we can act on our data.
 ' For this example, we will just display the information entered
 ' in a text box.
 If crt.Dialog.MessageBox("Username provided: " & strUsername & _
 vbcrlf & vbcrlf & _
 "Would you also like to display the " & _
 "password that was entered?", _
 "Data Display", _
 vbYesNo) <> vbYes Then Exit Do

 crt.Dialog.MessageBox "Here is the password that was entered:" & _
 vbcrlf & vbtab & _
 "Password: " & strPassword
 Exit Do
 End Select

 ' Wait for user interaction with the dialog...
 crt.Sleep 200
Loop

A Guide to Using VBScript in SecureCRT 83 © 2009-2010 VanDyke Software, Inc.

CChhaapptteerr 77:: LLooggggiinngg,, RReeaaddiinngg,, aanndd WWrrii tt iinngg FFii lleess
Whether you are saving a history of commands entered for auditing purposes, reading in fields from a
CSV file, or backing up a Cisco router, you may at some point need to write data to or read data from a
file. This chapter introduces the logging methods provided by SecureCRT's Session object.
Techniques for reading and writing data from and to files using VBScript's built-in FileSystemObject
and its related objects and methods are also discussed.

77..11 LLooggggiinngg wwiitthh SSeeccuurreeCCRRTT''ss SSeessssiioonn OObbjjeecctt
SecureCRT provides for session logging either on the fly by choosing File / Log Session or File /
Raw Log Session from SecureCRT's main menu, or by setting up logging to occur automatically
with a pre-configured session in the Terminal / Log File category of the Session Options dialog.
The method required for controlling log files within a script depends on whether you are connecting
in an ad hoc manner versus connecting with an pre-configured session.

LLooggggiinngg wwhhiillee CCoonnnneecctteedd wwiitthh aann AAdd HHoocc CCoonnnneeccttiioonn
If you are connected to a remote device with an ad hoc connection (see section 3.2 in Chapter
3), you can enable logging using the Session.Log method, which has the following general
syntax:

crt.Session.Log bStart[, bAppend[, bRaw]]

bStart: Boolean value indicating whether or not logging should be started (True) or

stopped (False).

bAppend: Boolean value instructing SecureCRT to either append (True) to any existing log

file, or overwrite (False, default) any existing log file.

bRaw: Boolean value instructing SecureCRT to either log in raw mode (True), or

normal mode (False, default). A raw log in SecureCRT captures all data
received from the remote system, including control codes and escape
sequences. A normal log file captures only data received as displayed within the
terminal window in SecureCRT.

SSppeecciiffyyiinngg aa LLoogg FFiillee NNaammee
If you have not yet specified a log file name within your script code, the end user will be
prompted for the log file name as soon as the crt.Session.Log True statement is
executed. To specify a log file name, set the crt.Session.LogFileName property. For
example:

' Specify a log file name that is time-stamped (with legal
' filename characters). This way, the files can be sorted
' easily within Windows Explorer.
crt.Session.LogFileName = _
 "C:\Temp\Logs\%Y-%M-%D--%h-%m-%s.%t-%S(%H).txt"

TIP: As indicated in the example above, you can take advantage of the log file name

substitutions supported by SecureCRT when specifying a log file name. A table
of the substitutions supported in SecureCRT 6.2 is included here for your

A Guide to Using VBScript in SecureCRT 84 © 2009-2010 VanDyke Software, Inc.

convenience. Note that these SecureCRT log file name substitution variables are
case sensitive in contrast to Windows environment variables.

Variable Substitution Value
%H Value of the Hostname field as specified in Session Options. If

connection is ad hoc, the value for this substitution is always the
hostname or IP address of the remote device when using a
protocol other than Serial or TAPI. If using the Serial protocol, %H
is substituted as "Serial-COM#", where "#" indicates the actual
COM port to which the connection was made. When connecting
with TAPI, %H is substituted with the phone number that was
dialed.

Example #1:

crt.Session.Connect "/SERIAL COM1"
crt.Session.LogFileName = "C:\%S--%H.log"
' Above line results in a log file named:
' "Default--Serial-COM1.log"

Example #2:

crt.Session.Connect "/SSH2 192.168.0.1"
crt.Session.LogFileName = "C:\%S--%H.log"
' Above line results in a log file named:
' "Default--192.168.0.1.log"

%S The name of the Session, for a pre-configured session. If

connection is ad hoc, the value for this substitution is always
"Default", since with ad hoc connections the Default session
configuration is used.

%Y 4-digit year (e.g., "2009")
%M 2-digit month (e.g., "05")
%D 2-digit day (e.g., "19")
%h 2-digit hour (24-hour, e.g., "17")
%m 2-digit minutes (e.g., "40")
%s 2-digit seconds (e.g., "32")
%t 3-digit milliseconds (e.g., "894")
%% A literal “%” character (if you want one in your log file name)
%EnvVar% Value of environment variable named "EnvVar" (e.g., %TEMP%).

Note that environment variable substitution occurs first.

A Guide to Using VBScript in SecureCRT 85 © 2009-2010 VanDyke Software, Inc.

In such cases where an end user may have already started logging to a file manually (say,
before your script has been launched), you should first check to ensure logging isn't already
enabled before you attempt to start logging from within your script. If logging has already been
started, calling Session.Log will result in an error. For example:

' Attempting to enable logging if it has already been
' enabled will result in an error:
crt.Session.Log True

 The above code will result in the following error if logging has already been started:

If you are unsure whether or not logging has been enabled already, you can determine this
programmatically with an If statement within your script code:

If crt.Session.Logging <> True Then
 crt.Session.Log True
End If

If at any point within your script code, you desire to turn off logging, simply use the
Session.Log method, providing an argument of False. For example:

crt.Session.Log False

If logging is already enabled, and you want to ensure that specific log settings are active (using
a specific log file name, append vs. overwrite, etc.), then you may want to stop the logging
process, configure log settings within your script, and then enable logging as per your
requirements. For example:

If crt.Session.Logging Then
 ' Turn off logging before setting up our script's
 ' logging...
 crt.Session.Log False
End If

' Set up the log file so that it resides in the path
' defined in the TEMP environment variable, and is
' named according to the remote IP address:
crt.Session.LogFileName = "%TEMP%\" & _
 "LogFileForIP(" & crt.Session.RemoteAddress & ").txt"

crt.Session.LogUsingSessionOptions

' Send commands, etc.
' ...

' Stop logging

A Guide to Using VBScript in SecureCRT 86 © 2009-2010 VanDyke Software, Inc.

crt.Session.Log False

' Perform other script work, or setup on the remote for the
' next batch of logging...
' ...

' Start logging again (be sure to append or else we'll
' overwrite the data we've logged so far).
crt.Session.Log True, True

' Send more commands, etc.
' ...

' ...

LLooggggiinngg wwhhiillee CCoonnnneecctteedd wwiitthh aa PPrree--ccoonnffiigguurreedd SSeessssiioonn
A log file configuration can also be set up within a session for ease of use with repetitive logging
needs (Session Options dialog, Terminal / Log File category). Consider the following example
session logging configuration:

If you are connecting with a pre-configured session for which you have already configured
log file settings similar to what is displayed above, you can start logging with that session by

A Guide to Using VBScript in SecureCRT 87 © 2009-2010 VanDyke Software, Inc.

calling the LogUsingSessionOptions method associated with the session to which you
are currently connected. Since all of the settings are defined within the Session
configuration, there are no arguments provided to the LogUsingSessionOptions
method. For example:

If crt.Session.Logging Then
 ' Turn off logging before setting up our script's logging...
 crt.Session.Log False
End If

' Turn on logging; use session option log file configuration
' (if used with an ad hoc session, the Default session's log
' file configuration is used).
crt.Session.LogUsingSessionOptions

' Send commands, etc.
' ...

' Stop logging
crt.Session.Log False

Note: The LogUsingSessionOptions method is also available with

ad hoc connections. If the Session object is associated with an
ad hoc connection, the Default session's log file settings will be
used when LogUsingSessionOptions is called.

77..22 RReeaaddiinngg DDaattaa ffrroomm FFii lleess UUssiinngg tthhee FFii lleeSSyysstteemmOObbjjeecctt
In some situations, you may have connection data stored in a .csv file, or some other type of flat
text file. You can make use of the FileSystemObject to read in data from a file for use within a
SecureCRT script. Reading data from a file using the VBScript FileSystemObject can typically
be accomplished using the following general steps:

1) Get a reference to the FileSystemObject:

Set objFSO = CreateObject("Scripting.FileSystemObject")

2) Use the FileSystemObject reference to retrieve a reference to a TextStream object

associated with the text file from which the data is to be read:

Set objStream = objFSO.OpenTextFile("C:\Temp\MyDataFile.txt")

3) Read the data from the TextStream object using a loop to read in each line. Alternatively,

if the data file isn't too large (less than 1-2 MB in size), read in all the data at once and use
the Split() method to create an array representing each line of the file that was read:

Do While objStream.AtEndOfStream <> True
 strLine = objStream.ReadLine
 '...
Loop

Or:

strFileData = objStream.ReadAll
objStream.Close
vLines = Split(strFileData, vbcrlf)
For each strLine in vLines

A Guide to Using VBScript in SecureCRT 88 © 2009-2010 VanDyke Software, Inc.

 ' ...
Next

The risk of using ReadAll() to read a file that is larger than 1-2 MB in size is decreased
performance and increased memory usage. You may find this threshold smaller or larger,
depending on the capabilities of the computer on which you are running SecureCRT.

4) Close the file.

objStream.Close

In some scenarios, you may even find the need to read specific data from one file, and additional
data from one or more different files. You may also desire to establish a convention you can use to
indicate that a line should be ignored by introducing the concept of a "comment" character. The
following example code shows how you can read in the contents of a file, ignoring blank lines as
well as lines considered "comments" by the presence of a comment character found at the
beginning of the line.

' ReadDataFromFile.vbs
' Reads in data line-by-line from a file and aggregates the information
' into an array. We then iterate over each element of the array and
' display the non-comment lines in a message box.
'
' This script assumes a data file named "MyDataFile.txt" lives in your
' "My Documents" folder.
'
' Example file contents that this script would expect (remove leading comment
' characters ("'")s) are provided in the comment lines below:
'
' # This is a comment line
' # This is a comment line, too.
' pager 0
'
' # Blank lines are ignored (like above), and counted as comment lines
' # The following 2 lines will not be ignored:
' sh version
' sh config

Dim g_fso, g_shell
Set g_fso = CreateObject("Scripting.FileSystemObject")
Set g_shell = CreateObject("WScript.Shell")

g_strDataFile = g_shell.SpecialFolders("MyDocuments") & "\MyDataFile.txt"
g_strComment = "#"

MainSub

Sub MainSub()

 Dim vLines()
 Dim nLineCount, nCommentLines
 If Not ReadDataFromFile(g_strDataFile, _
 g_strComment, _
 vLines, _
 nLineCount, _
 nCommentLines) Then
 MsgBox "No lines were found in file: " & vbcrlf & vbtab & g_strDataFile
 Exit Sub
 End If

A Guide to Using VBScript in SecureCRT 89 © 2009-2010 VanDyke Software, Inc.

 ' Iterate through each element of our vLines array and compose a
 ' message
 For nIndex = 1 To nLineCount
 ' Arrays are indexed at zero...
 strFileText = strFileText & _
 "Line #" & nIndex & ": " & vLines(nIndex - 1) & vbcrlf
 Next

 ' Note that the MsgBox built-in VBScript function will truncate the
 ' data displayed in the message box window at 256 characters. So,
 ' even though strFileText will contain all the data from the file,
 ' if the file is rather large, it may not all be displayed in the
 ' message box. However, at least you won't have a window that is too
 ' large to see the OK button at the bottom :).
 MsgBox "Total number of non-blank, non-comment lines from file: " & _
 nLineCount & vbcrlf & _
 "Total number of comment & blank lines found: " & nCommentLines & _
 vbcrlf & vbcrlf & _
 g_strDataFile & ":" & _
 vbcrlf & strFileText
End Sub

'~~
Function ReadDataFromFile(strFile, _
 strComment, _
 ByRef vLines, _
 ByRef nLineCount, _
 ByRef nCommentLines)
' Returns True if the file was found.
' strFile: IN parameter specifying full path to data file.
' strComment: IN parameter specifying string that preceded
' by 0 or more space characters will indicate
' that the line should be ignored.
' vLines: OUT parameter (destructive) containing array
' of lines read in from file.
' nLineCount: OUT parameter (destructive) indicating number
' of lines read in from file.
' nCommentLines: OUT parameter (destructive) indicating number
' of comment/blank lines found
'
'
 ' Check to see if the file exists... if not, bail early.
 If Not g_fso.FileExists(strFile) Then Exit Function

 ' Start off with a reasonable size for the array:
 ReDim vLines(5)

 ' Open a TextStream Object to the file...
 Set objTextStream = g_fso.OpenTextFile(strFile, 1, False)

 ' Used for detecting comment lines, a regular expression object
 Set re = New RegExp
 re.Pattern = "(^[\t]*(?:" & strComment & ")+.*$)|(^[\t]+$)|(^$)"
 re.Multiline = False
 re.IgnoreCase = False

 ' Now read in each line of the file and add an element to
 ' the array for each line that isn't just spaces...
 nLineCount = 0
 nCommentLines = 0

 Do While Not objTextStream.AtEndOfStream

A Guide to Using VBScript in SecureCRT 90 © 2009-2010 VanDyke Software, Inc.

 strLine = ""

 ' Find out if we need to make our array bigger yet
 ' to accommodate all the lines in the file. For large
 ' files, this can be very memory-intensive.
 If UBound(vLines) >= nLineCount Then
 ReDim Preserve vLines(nLineCount + 5)
 End If

 strLine = Trim(objTextStream.ReadLine)

 ' Look for comment lines that match the pattern
 ' [whitespace][strComment]
 If re.Test(strLine) Then
 ' Line matches our comment pattern... ignore it
 nCommentLines = nCommentLines + 1
 Else
 vLines(nLineCount) = strLine
 nLineCount = nLineCount + 1
 End If
 Loop

 objTextStream.Close

 ReadDataFromFile = True
End Function

With a function like ReadDataFromFile in the above example, you can easily read different sets
of data from multiple files. For example, consider a situation in which you might have two files, one
file that lists the IP addresses or host names of machines to which you need to connect, and a
second file that lists the commands that need to be sent to each of the remote machines.

 SSoolluutt iioonn:: RReeaadd DDaattaa ffrroomm SSeeppaarraattee FFii lleess:: HHoossttss,, CCoommmmaannddss
The following example shows how you might have a nested loop that connects to each of the hosts
stored in a "hosts.txt" file, individually sending commands read from a "commands.txt" file before
moving on to the next host.

' ReadDataFromHostFile-SendCommandsFromCommandsFile.vbs
'
' Description:
' Reads in a "hosts.txt" file (located in your "My Documents" folder),
' ignoring comment/blank lines. Reads in a "commands.txt" file (located
' in your "My Documents" folder), ignoring comment/blank lines.
' For each legitimate line found in the "hosts.txt" file, a connection
' is made in series, and all legitimate lines read in from the "commands.txt"
' file are sent to the remote system.
'
' After connecting to each host, and prior to sending any commands, this
' script attempts to detect the command prompt, as command prompts on
' various hosts may be different. This auto-detect process involves
' using the crt.Screen.WaitForCursor method to determine when the cursor
' stops moving (one way to tell that the remote has sent all data after
' a login, including the prompt). The script then asks the Screen object
' for the current line on which the cursor is resting. The line text is
' what is used for the prompt when sending multiple commands (after all
' we want to make sure the remote machine is ready to receive commands
' before attempting to send any commands).
'
' Example "hosts.txt" file:
' # hosts file example

A Guide to Using VBScript in SecureCRT 91 © 2009-2010 VanDyke Software, Inc.

'
' # Redhat Linux Hosts
' 192.168.0.1
' 192.168.1.1
'
' # Solaris Hosts
' 192.168.0.2
' 192.168.1.9
'
'
' Example "commands.txt" file:
' # Example Commands.txt file
'
' # First, issue a hostname command so it's easy to see where we are in
' # the output within the terminal window...
' hostname
'
' # Run 'uptime' to find out how long the machine has been up, and
' # basic load average.
' uptime
'
' # Run 'w' command to see who's logged on
' w
'
' # Run 'df' to find out how much disk space is used.
' df

Dim g_fso, g_shell
Set g_fso = CreateObject("Scripting.FileSystemObject")
Set g_shell = CreateObject("WScript.Shell")

g_strHostsFile = g_shell.SpecialFolders("MyDocuments") & "\hosts.txt"
g_strCommandsFile = g_shell.SpecialFolders("MyDocuments") & "\commands.txt"
g_strComment = "#"

' If you need to connect via a firewall, specify the necessary
' pre-defined firewall name right here (must match the name of the
' firewall as defined in the Global Options, Firewall category)...
' otherwise, set the g_strFirewall variable to an empty string (""):
g_strFirewall = " /FIREWALL=linux-dynpf "

' Define user credentials to be used when authenticating to all remote
' machines. For this example, we'll be using publickey authentication.
g_strUsername = "user"
g_strIdentity = "C:\MyKeys\MyKeyFile.pub"

Dim g_strError

MainSub

Sub MainSub()

 Dim vHosts(), vCommands()
 Dim nHostCount, nCommandCount, nCommentLines
 If Not ReadDataFromFile(g_strHostsFile, _
 g_strComment, _
 vHosts, _
 nHostCount, _
 nCommentLines) Then
 crt.Dialog.MessageBox g_strError
 Exit Sub
 End If

A Guide to Using VBScript in SecureCRT 92 © 2009-2010 VanDyke Software, Inc.

 If Not ReadDataFromFile(g_strCommandsFile, _
 g_strComment, _
 vCommands, _
 nCommandCount, _
 nCommentLines) Then
 crt.Dialog.MessageBox g_strError
 Exit Sub
 End If

 Dim strErrors, strSuccesses
 ' Iterate through each element of our vHosts array...
 For nIndex = 0 To nHostCount - 1
 ' Arrays are indexed starting at 0 (zero)
 strHost = vHosts(nIndex)

 ' Exit the loop if the host name is empty (this means we've
 ' reached the end of our array)
 If strHost = "" Then Exit For

 strConnectString = g_strFirewall & _
 " /SSH2 /ACCEPTHOSTKEYS " & _
 " /L " & g_strUsername & _
 " /I " & g_strIdentity & " " & strHost

 If Connect(strConnectString) <> 0 Then
 strErrors = strErrors & vbcrlf & _
 vbtab & "Failed to connect to " & strHost & _
 ": " & g_strError
 Else
 crt.Screen.Synchronous = True

 Do
 ' Attempt to detect the command prompt heuristically...
 Do
 bCursorMoved = crt.Screen.WaitForCursor(1)
 Loop Until bCursorMoved = False
 ' Once the cursor has stopped moving for about a second, we'll
 ' assume it's safe to start interacting with the remote system.

 ' Get the shell prompt so that we can know what to look for when
 ' determining if the command is completed. Won't work if the prompt
 ' is dynamic (e.g., changes according to current working folder, etc.)
 nRow = crt.Screen.CurrentRow
 strPrompt = crt.screen.Get(nRow, _
 0, _
 nRow, _
 crt.Screen.CurrentColumn - 1)

 ' Loop until we actually see a line of text appear (the
 ' timeout for WaitForCursor above might not be enough
 ' for slower-responding hosts).
 strPrompt = Trim(strPrompt)
 If strPrompt <> "" Then Exit Do
 Loop

 ' Send each command to the remote system.
 For Each strCommand in vCommands
 ' Exit the For..Next loop if our current command is empty...
 ' otherwise, we'll just be pressing the Enter key pointlessly.
 If Trim(strCommand) = "" Then Exit For

 crt.Screen.Send strCommand & vbcr

A Guide to Using VBScript in SecureCRT 93 © 2009-2010 VanDyke Software, Inc.

 ' Wait for the command to complete before moving on to
 ' the next command
 crt.Screen.WaitForString strPrompt
 Next

 ' Now disconnect from the current machine before connecting to the
 ' next machine
 crt.Session.Disconnect

 strSuccesses = strSuccesses & vbcrlf & _
 strHost

 End If

 Next

 strMsg = "Commands were sent to the following hosts: " & _
 vbcrlf & strSuccesses

 If strErrors <> "" Then
 strMsg = strMsg & vbcrlf & vbcrlf & _
 "Errors were encountered connecting to these hosts:" & _
 vbcrlf & strErrors
 End If

 crt.Dialog.MessageBox strMsg

End Sub

'~~
Function ReadDataFromFile(strFile, _
 strComment, _
 ByRef vLines, _
 ByRef nLineCount, _
 ByRef nCommentLines)
' Returns True if the file was found.
' strFile: IN parameter specifying full path to data file.
' strComment: IN parameter specifying string that preceded
' by 0 or more space characters will indicate
' that the line should be ignored.
' vLines: OUT parameter (destructive) containing array
' of lines read in from file.
' nLineCount: OUT parameter (destructive) indicating number
' of lines read in from file.
' nCommentLines: OUT parameter (destructive) indicating number
' of comment/blank lines found
'
'
 ' Check to see if the file exists... if not, bail early.
 If Not g_fso.FileExists(strFile) Then
 g_strError = "File not found: " & strFile
 Exit Function
 End If

 ' Start off with a reasonable size for the array:
 ReDim vLines(5)

 ' Open a TextStream Object to the file...
 Set objTextStream = g_fso.OpenTextFile(strFile, 1, False)

 ' A regular expression object used for detecting blank/comment lines,
 Set re = New RegExp

A Guide to Using VBScript in SecureCRT 94 © 2009-2010 VanDyke Software, Inc.

 re.Pattern = "(^[\t]*(?:" & strComment & ")+.*$)|(^[\t]+$)|(^$)"
 re.Multiline = False
 re.IgnoreCase = False

 ' Now read in each line of the file and add an element to
 ' the array for each line that isn't just spaces...
 nLineCount = 0
 nCommentLines = 0

 Do While Not objTextStream.AtEndOfStream
 strLine = ""

 ' Find out if we need to make our array bigger yet
 ' to accommodate all the lines in the file. For large
 ' files, this can be very memory-intensive.
 If UBound(vLines) >= nLineCount Then
 ReDim Preserve vLines(nLineCount + 5)
 End If

 strLine = Trim(objTextStream.ReadLine)

 ' Look for comment lines that match the pattern
 ' [whitespace][strComment]
 If re.Test(strLine) Then
 ' Line matches our comment pattern... ignore it
 nCommentLines = nCommentLines + 1
 Else
 vLines(nLineCount) = strLine
 nLineCount = nLineCount + 1
 End If
 Loop

 objTextStream.Close

 If nLineCount = 0 Then
 g_strError = "ReadDataFromFile() Error. " & _
 "No lines (other than blank/comment lines)" & _
 " were found in file: " & vbcrlf & vbtab & strFile
 Exit Function
 End If

 g_strError = ""
 ReadDataFromFile = True
End Function

'~~
Function Connect(strConnectInfo)
' Workaround that uses "On Error Resume Next" VBScript directive to detect
' errors that might occur from the crt.Session.Connect call and instead of
' stopping the script with an unrecoverable error, allow for error handling
' within the script as the script author desires.

 g_strError = ""

 ' Turn off error handling before attempting the connection
 On Error Resume Next
 crt.Session.Connect strConnectInfo
 ' Capture the error code and description (if any)
 nError = Err.Number
 strErr = Err.Description
 ' Restore normal error handling so that any other errors in our
 ' script are not masked/ignored
 On Error Goto 0

A Guide to Using VBScript in SecureCRT 95 © 2009-2010 VanDyke Software, Inc.

 Connect = nError
 If nError <> 0 Then
 g_strError = strErr
 End If
End Function

77..33 WWrriitt iinngg DDaattaa ttoo FFii lleess UUssiinngg tthhee FFii lleeSSyysstteemmOObbjjeecctt
If SecureCRT's logging capability discussed earlier doesn't provide you with the flexibility and
control you need over what and how data is written, you can take advantage of VBScript's
FileSystemObject (mentioned earlier) and TextStreamObject. Another example of when you
might want to write to a file is if you needed to create a CSV file from the text selected within the
terminal window.

Writing data to a file using the VBScript FileSystemObject can typically be accomplished using
the following general steps:

1) Get a reference to the FileSystemObject:

Set objFSO = CreateObject("Scripting.FileSystemObject")

2) Use the FileSystemObject reference to retrieve a reference to a TextStream object

associated with the text file to which the data is to be written.

Const ForWriting = 2
Const ForAppending = 8

' Create a new file (or overwrite an existing one)
Set objStream = objFSO.OpenTextFile(_
 "C:\Temp\MyDataFile.txt", _
 ForWriting, _
 True)

' Append to an existing file (create if it doesn't exist)
Set objStream = objFSO.OpenTextFile(_
 "C:\Temp\MyDataFile.txt", _
 ForAppending, _
 True)

3) Write the data to the file using the TextStream object's Write or WriteLine methods.

The WriteLine method automatically appends EOL characters to the end of the data
supplied to the method.

objStream.Write "This data is written "
objStream.Write "as one single line."

Or:

objStream.WriteLine "This data is written "
objStream.WriteLine "as two separate lines."

Note that you can write multiple lines using either method by manually inserting CRLF
sequences as needed, for example:

A Guide to Using VBScript in SecureCRT 96 © 2009-2010 VanDyke Software, Inc.

objStream.Write "This is line one." & vbcrlf & _
 "This is line two." & vbcrlf & _
 "This is line three." & vbcrlf & _
 "This is line four." & vbcrlf

Or:

objStream.WriteLine "This is line one." & vbcrlf & _
 "This is line two." & vbcrlf & _
 "This is line three." & vbcrlf & _
 "This is line four."

4) When you have completed writing data to the file, close the file:

objStream.Close

A Guide to Using VBScript in SecureCRT 97 © 2009-2010 VanDyke Software, Inc.

 SSoolluutt iioonn:: SSaavvee SSeelleecctteedd TTeexxtt ttoo aa CCSSVV FFii llee
The following example solution shows how you might be able to select data from the terminal
window, save the data to a CSV file, and then display the CSV file within the default CSV file
application, as depicted in the graphic below.

Saving Selected Text to a CSV File

Here's the sample solution code for saving selected text to a CSV file:

#$language = "VBScript"
#$interface = "1.0"
' SaveSelectedTextToCSVFile.vbs
'
' Description:
' If non-whitespace text is selected within the terminal screen, the user
' will be prompted for a location + filename in which to store the selected
' text as a CSV file. Multiple space characters within the data will be

A Guide to Using VBScript in SecureCRT 98 © 2009-2010 VanDyke Software, Inc.

' converted to a single comma character.
'
' Demonstrates:
' - How to use the Screen.Selection property new to SecureCRT 6.1 to access
' text selected within the terminal window.
' - How to use the Scripting.FileSystemObject to write data to a
' text file.
' - How to use RegExp's Replace() method to convert sequential space
' characters into a single comma character.
' - One way of determining if the script is running on Windows XP or not.
' - One way of displaying a file browse/open dialog in Windows XP
'
'
' g_nMode is used only if the user specifies a file that already exists, in
' which case the user will be prompted to overwrite the existing file, append
' to the existing file, or cancel the operation.
Dim g_nMode
Const ForWriting = 2
Const ForAppending = 8

' Be "tab safe" by getting a reference to the tab for which this script
' has been launched:
Set objTab = crt.GetScriptTab

Set g_shell = CreateObject("WScript.Shell")
Set g_fso = CreateObject("Scripting.FileSystemObject")

SaveSelectedTextToCSVFile

'~~
Sub SaveSelectedTextToCSVFile()

 ' Capture the selected text into a variable. The 'Selection' property
 ' is available in SecureCRT 6.1 and later. This line of code will cause
 ' an error if launched in a version of SecureCRT earlier than 6.1.
 strSelection = objTab.Screen.Selection

 ' Check to see if the selection really has any text to save... we don't
 ' usually want to write out nothing to a file.
 If Trim(strSelection) = "" Then
 crt.Dialog.MessageBox "Nothing to save!"
 Exit Sub
 End If

 strFilename = g_shell.SpecialFolders("MyDocuments") & _
 "\" & crt.Session.RemoteAddress & "-SelectedText.csv"
 Do
 strFilename = BrowseForFile(strFilename)

 If strFilename = "" Then Exit Sub

 ' Do some sanity checking if the file specified by the user already
 ' exists...
 If g_fso.FileExists(strFilename) Then

 nResult = crt.Dialog.MessageBox(_
 "Do you want to replace the contents of """ & _
 strFilename & _
 """ with the selected text?" & vbcrlf & vbcrlf & _
 vbtab & "Yes = overwrite" & vbcrlf & vbcrlf & _
 vbtab & "No = append" & vbcrlf & vbcrlf & _
 vbtab & "Cancel = end script" & vbcrlf, _
 "Replace Existing File?", _

A Guide to Using VBScript in SecureCRT 99 © 2009-2010 VanDyke Software, Inc.

 vbYesNoCancel)
 Select Case (nResult)
 Case vbYes
 g_nMode = ForWriting
 Exit Do
 Case vbNo
 g_nMode = ForAppending
 Exit Do
 Case Else
 Exit Sub
 End Select
 Else
 g_nMode = ForWriting
 Exit Do
 End If

 Loop

 ' Automatically append a .csv if the filename supplied doesn't include
 ' any extension.
 If g_fso.GetExtensionName(strFilename) = "" Then
 strFilename = strFilename & ".csv"
 End If

 ' Replace instances of one or more space characters with a comma. Use
 ' the VBScript built-in RegExp object's Replace method to perform this
 ' task
 Set re = New RegExp
 ' The pattern below means "one or more sequential space characters"
 re.Pattern = "[]+"
 re.Global = True
 re.MultiLine = True
 strCSVData = re.Replace(strSelection, ",")

 Do
 On Error Resume Next
 Set objFile = g_fso.OpenTextFile(strFilename, g_nMode, True)
 nError = Err.Number
 strErr = Err.Description
 On Error Goto 0
 If nError = 0 Then Exit Do

 ' Display a message indicating there were problems opening
 ' the file.
 nResponse = crt.Dialog.MessageBox(_
 "Failed to open """ & strFilename & """ (" & nError & "): " & _
 vbcrlf & vbtab & strErr & vbcrlf & vbcrlf & _
 "Check to see if the file is already open in another " & _
 "application and make sure you have permissions to " & _
 vbcrlf & "edit the file and create new files within the " & _
 "destination folder.", _
 "Save Operation Failed", _
 vbRetryCancel)
 If nResponse <> vbRetry Then Exit Sub
 Loop

 objFile.Write strCSVData & vbcrlf
 objFile.Close

 g_strMode = "Wrote"
 If g_nMode = ForAppending Then g_strMode = "Appended"

 crt.Dialog.MessageBox _

A Guide to Using VBScript in SecureCRT 100 © 2009-2010 VanDyke Software, Inc.

 g_strMode & " " & Len(strSelection) & " bytes to file:" & vbcrlf & _
 vbcrlf & strFilename

 ' Now open the CSV file in the default .csv file application handler...
 g_shell.Run chr(34) & strFilename & chr(34)

End sub

'~~
Function BrowseForFile(strDefault)
 ' Determine if we're running on Windows XP or not...
 Dim strOSName
 Set objWMIService = GetObject("winmgmts:" & _
 "{impersonationLevel=impersonate}!\\.\root\cimv2")
 Set colSettings = _
 objWMIService.ExecQuery("SELECT * FROM Win32_OperatingSystem")
 For Each objOS In colSettings
 ' Windows XP "Name" might look like this:
 ' "Microsoft Windows XP Professional|C:\WINDOWS|\Device\Harddisk0\"...
 ' Vista might appear as follows:
 ' "Microsoft® Windows Vista™ Business |C:\Windows|\Device\Harddisk0\"...
 strOsName = Split(objOS.Name, "|")(0)
 Exit For
 Next

 If Instr(strOsName, "XP") > 0 Then
 ' Based on information obtained from
 ' http://blogs.msdn.com/gstemp/archive/2004/02/17/74868.aspx
 ' NOTE: Will only work with Windows XP or newer since other OS's
 ' don't have a UserAccounts.CommonDialog ActiveX
 ' object registered.
 Set objDialog = CreateObject("UserAccounts.CommonDialog")
 objDialog.FileName = strDefault
 objDialog.Filter = "CSV Files|*.csv|Text Files|*.txt|All Files|*.*"
 objDialog.FilterIndex = 1
 objDialog.InitialDir = g_shell.SpecialFolders("MyDocuments")
 nResult = objDialog.ShowOpen

 If nResult <> 0 Then
 BrowseForFile = objDialog.FileName
 End If
 Else
 ' On Windows other than XP, we'll just pop up an InputBox
 BrowseForFile = crt.Dialog.Prompt(_
 "Save selected text to file:", _
 "SecureCRT - Save Selected Text To File", _
 strDefault)
 End If
End Function

 SSoolluutt iioonn:: IImmppoorrtt DDaattaa ffrroomm FFii llee ttoo SSeeccuurreeCCRRTT SSeessssiioonnss
If you're new to SecureCRT and you have host information stored in an Excel spreadsheet or a flat
text file, you might be interested in this example solution. This solution also provides an example of
how to create both files as well as folders using the FileSystemObject.

' ImportArbitraryHostDataToCRTSessions.txt
' (Designed for use with SecureCRT 5.0 and later)
'
' This sample script is designed to create sessions from a

A Guide to Using VBScript in SecureCRT 101 © 2009-2010 VanDyke Software, Inc.

' text file (.csv format by default, but this can be edited
' to fit the format you have).
'
' The first line of your data file should contain a
' comma-separated (or whatever you define as the g_strDelimiter below)
' list of "fields" designated by the following keywords:
' session_name: The name that should be used for the session. If this field
' does not exist, the hostname field is used as the session_name.
' folder: Relative path for session as displayed in the Connect dialog.
' hostname: The hostname or IP for the remote server
' protocol: The protocol (SSH2, SSH1, telnet, rlogin)
' port: The port on which remote server is listening
' username: The username for the account on the remote server
' emulation: The emulation (vt100, xterm, etc.)
' description: The comment/description. Multiple lines are separated with '\r'
'
' The first line of the data file instructs this script as to the format of the
' fields in your data file and their meaning.
' 192.168.0.1,root
' 192.168.0.2,administrator
' 192.168.0.3,root
' 192.168.0.4,root
' 192.168.0.5,administrator
' ... and so on
' ... then you would need to insert the following line at
' the top of your data file in order to use this script
' (without any leading spaces -- the leading spaces are
' included here to improve readability):
'
' hostname,username
'
' If your data file uses spaces or a character other than comma as the delimiter,
' you would also need to edit the g_strDelimiter value a few lines below to
' indicate that fields are separated by spaces, rather than by commas. For
' example:
' g_strDelimiter = " "
' g_strDelimiter = " "

Dim g_strSupportedFields
g_strSupportedFields = _
 "description,emulation,folder,hostname,port,protocol,session_name,username"

' If you wish to overwrite existing sessions, set this to
' True; for the default sample script, we're playing it safe
' and leaving any existing sessions in place :).
Dim g_bOverwriteExistingSessions
g_bOverwriteExistingSessions = False

Dim g_strProduct

Dim g_strHostsFile, g_strDelimiter, g_strExampleHostsFile
g_strHostsFile = "C:\Temp\MyDataFile.csv"
g_strExampleHostsFile = _
 vbtab & "hostname,protocol,username,folder,emulation" & vbcrlf & _
 vbtab & "192.168.0.1,SSH2,root,Linux Machines,XTerm" & vbcrlf & _
 vbtab & "192.168.0.2,SSH2,root,Linux Machines,XTerm" & vbcrlf & _
 vbtab & "..." & vbcrlf & _
 vbtab & "10.0.100.1,SSH1,admin,CISCO Routers,VT100" & vbcrlf & _
 vbtab & "10.0.101.1,SSH1,admin,CISCO Routers,VT100" & vbcrlf & _
 vbtab & "..." & vbcrlf & _
 vbtab & "myhost.domain.com,SSH2,administrator,Windows Servers,VShell" & _
 vbcrlf & _
 vbtab & "..."

A Guide to Using VBScript in SecureCRT 102 © 2009-2010 VanDyke Software, Inc.

g_strDelimiter = "," ' comma
' g_strDelimiter = " " ' space
' g_strDelimiter = ";" ' semi-colon
' g_strDelimiter = chr(9) ' tab

g_strExampleHostsFile = Replace(g_strExampleHostsFile, ",", g_strDelimiter)

Dim g_fso, g_shell
Set g_fso = CreateObject("Scripting.FileSystemObject")
Set g_shell = CreateObject("WScript.Shell")

Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8

Dim g_strConfigFolder
Dim strFieldDesignations
Dim vFieldsArray
Dim vSessionInfo

Dim strSessionName, strHostName, strPort
Dim strUserName, strProtocol, strEmulation
Dim strPathForSessions, strLine, nFieldIndex
Dim strSessionFileName, strFolder, nDescriptionLineCount, strDescription

' This list must be in the same order as the entries in the lines of the
' text file. It is not a requirement that all the options be used. Just
' remove any option that is not in the text file.
strFieldDesignations = "session_name,protocol,hostname,port,username,emulation"

Dim g_strLastError, g_strErrors
Dim g_nSessionsCreated, g_nDataLines

Import

'~~
Sub Import()
 g_strProduct = "SecureCRT"

 g_strHostsFile = BrowseForFile(_
 "Please select the host data file to be imported.", _
 g_fso.GetParentFolderName(g_strHostsFile))

 If g_strHostsFile = "" Then
 Exit Sub
 End If

 ' Open our data file for reading
 Dim objDataFile
 Set objDataFile = g_fso.OpenTextFile(g_strHostsFile, ForReading, False)

 ' Now read the first line of the data file to determine
 ' the field designations
 strFieldDesignations = lcase(objDataFile.ReadLine)

 ' Validate the data file
 If Not ValidateFieldDesignations(strFieldDesignations) Then
 objDataFile.Close
 Exit Sub
 End If

 ' Find out where the CRT/SecureCRT configuration lives.

A Guide to Using VBScript in SecureCRT 103 © 2009-2010 VanDyke Software, Inc.

 g_strConfigFolder = ReadRegKey("HKCU\Software\VanDyke\" & _
 g_strProduct & "\Config Path")

 Do
 g_strConfigFolder = InputBox(_
 "Your current config folder is specified as seen below. " & _
 vbcrlf & vbcrlf & _
 "If you want to have the session files created in another " & _
 "folder, please specify the folder below.", _
 vbcrlf & vbcrlf & _
 "Please select/confirm Config folder", _
 g_strConfigFolder)

 If g_strConfigFolder = "" Then Exit Sub

 If Not g_fso.FolderExists(g_strConfigFolder & "\Sessions") Then
 Dim nAnswer
 nAnswer = MsgBox(_
 "This folder doesn't have a ""Sessions"" subfolder." & _
 vbcrlf & vbcrlf & _
 "Would you like to create one now?", vbYesNoCancel, _
 "Import Data To SecureCRT Sessions")
 Select Case nAnswer
 Case vbCancel
 Exit Sub
 Case vbYes
 If Not CreateFolderPath(_
 g_strConfigFolder & "\Sessions") Then
 MsgBox "Failed to create folder (" & _
 g_strConfigFolder & "\Sessions" & "): " & _
 vbcrlf & vbcrlf & g_strLastError, _
 vbOkOnly, _
 "Import Data To SecureCRT Sessions"
 Else
 Exit Do
 End If
 End Select
 Else
 ' Folder already exists, so we know we can successfully continue
 Exit Do
 End If
 Loop

 ' Here we create an array of the items that will be used to create
 ' the new session, based on the fields separated by the delimiter
 ' specified in g_strDelimiter
 vFieldsArray = Split(strFieldDesignations, g_strDelimiter)

 ' Loop through reading each line in the data file and creating a session
 ' based on the information contained on each line.
 Do While Not objDataFile.AtEndOfStream
 strLine = ""
 strLine = objDataFile.ReadLine

 ' This sets v_File Data array elements to
 ' each section of strLine, separated by the delimiter
 vSessionInfo = Split(strLine, g_strDelimiter)
 If UBound(vSessionInfo) < UBound(vFieldsArray) Then
 g_strErrors = g_strErrors & vbcrlf & _
 "Insufficient data on line #" & _
 objDataFile.Line - 1 & ": " & strLine
 Else

A Guide to Using VBScript in SecureCRT 104 © 2009-2010 VanDyke Software, Inc.

 ' Variable used to determine if a session file should actually be
 ' created, or if there was an unrecoverable error (and the session
 ' should be skipped).
 Dim bWriteFile

 ' Now we will match the items from the new file array to the correct
 ' variable for the session's ini file
 bWriteFile = True
 For nFieldIndex = 0 To UBound(vSessionInfo)

 Select Case vFieldsArray(nFieldIndex)
 Case "session_name"
 strSessionName = vSessionInfo(nFieldIndex)
 ' Check folder name for any invalid characters
 Dim re
 Set re = New RegExp
 re.Pattern = "[\\\|\/\:*\?\""\<\>]"
 If re.Test(strSessionName) Then
 bWriteFile = False
 If g_strErrors <> "" Then g_strErrors = _
 vbcrlf & g_strErrors

 g_strErrors = _
 "Error: " & _
 "Invalid characters found in SessionName """ & _
 strSessionName & """ specified on line #" & _
 objDataFile.Line - 1 & ": " & strLine & _
 g_strErrors
 End If

 Case "port"
 strPort = Trim(vSessionInfo(nFieldIndex))
 If Not IsNumeric(strPort) Then
 bWriteFile = False
 If g_strErrors <> "" Then g_strErrors = _
 vbcrlf & g_strErrors

 g_strErrors = _
 "Error: Invalid port """ & strPort & _
 """ specified on line #" & _
 objDataFile.Line - 1 & ": " & strLine & _
 g_strErrors
 End If
 strPort = Hex(strPort)
 strPort = NormalizeNumber(strPort)

 Case "protocol"
 strProtocol = Trim(lcase(vSessionInfo(nFieldIndex)))

 Select Case strProtocol
 Case "ssh2"
 strProtocol = "SSH2"
 Case "ssh1"
 strProtocol = "SSH1"
 Case "telnet"
 strProtocol = "Telnet"
 Case "serial"
 bWriteFile = False
 g_strErrors = g_strErrors & vbcrlf & _
 "Warning: This sample script does " & _
 "not support creating sessions " & _
 "with protocol """ & _
 vSessionInfo(nFieldIndex) & _

A Guide to Using VBScript in SecureCRT 105 © 2009-2010 VanDyke Software, Inc.

 """ specified on line #" & _
 objDataFile.Line - 1 & ": " & strLine
 Case "tapi"
 bWriteFile = False
 g_strErrors = g_strErrors & vbcrlf & _
 "Warning: This sample script does " & _
 "not support creating sessions " & _
 "with protocol """ & _
 vSessionInfo(nFieldIndex) & _
 """ specified on line #" & _
 objDataFile.Line - 1 & ": " & strLine
 Case "rlogin"
 strProtocol = "RLogin"
 Case Else
 bWriteFile = False
 If g_strErrors <> "" Then g_strErrors = _
 vbcrlf & g_strErrors

 g_strErrors = _
 "Error: Invalid protocol """ & _
 vSessionInfo(nFieldIndex) & _
 """ specified on line #" & _
 objDataFile.Line - 1 & ": " & strLine & _
 g_strErrors
 End Select ' for protocols

 Case "hostname"
 strHostName = Trim(vSessionInfo(nFieldIndex))
 If strHostName = "" Then
 bWriteFile = False
 g_strErrors = g_strErrors & vbcrlf & _
 "Warning: 'hostname' field on line #" & _
 objDataFile.Line - 1 & " is empty: " & strLine
 End If

 Case "username"
 strUserName = Trim(vSessionInfo(nFieldIndex))

 Case "emulation"
 strEmulation = LCase(Trim(vSessionInfo(nFieldIndex)))
 Select Case strEmulation
 Case "xterm"
 strEmulation = "Xterm"
 Case "vt100"
 strEmulation = "VT100"
 Case "vt102"
 strEmulation = "VT102"
 Case "vt220"
 strEmulation = "VT220"
 Case "ansi"
 strEmulation = "ANSI"
 Case "linux"
 strEmulation = "Linux"
 Case "scoansi"
 strEmulation = "SCOANSI"
 Case "vshell"
 strEmulation = "VShell"
 Case "wyse50"
 strEmulation = "WYSE50"
 Case "wyse60"
 strEmulation = "WYSE60"
 Case Else
 bWriteFile = False

A Guide to Using VBScript in SecureCRT 106 © 2009-2010 VanDyke Software, Inc.

 g_strErrors = g_strErrors & vbcrlf & _
 "Warning: Invalid emulation """ & _
 strEmulation & """ specified on line #" & _
 objDataFile.Line - 1 & ": " & strLine
 End Select

 Case "folder"
 strFolder = Trim(vSessionInfo(nFieldIndex))

 ' Check folder name for any invalid characters
 Set re = New RegExp
 re.Pattern = "[\|\/\:*\?\""\<\>]"
 If re.Test(strFolder) Then
 bWriteFile = False
 If g_strErrors <> "" Then g_strErrors = _
 vbcrlf & g_strErrors

 g_strErrors = _
 "Error: Invalid characters in folder """ & _
 strFolder & """ specified on line #" & _
 objDataFile.Line - 1 & ": " & strLine & _
 g_strErrors
 End If

 Case "description"
 strDescription = Trim(vSessionInfo(nFieldIndex))
 If strDescription <> "" Then
 Dim vDescriptionLines
 vDescriptionLines = Split(strDescription, "\r")
 nDescriptionLineCount = _
 UBound(vDescriptionLines) + 1
 strDescription = " " & _
 Replace(strDescription, "\r", vbcrlf & " ")
 Else
 g_strErrors = g_strErrors & vbcrlf & _
 "Warning: 'description' field on line #" & _
 objDataFile.Line - 1 & " is empty: " & strLine
 End If

 Case Else
 ' If there is an entry that the script is not set to use
 ' in strFieldDesignations, stop the script and display a
 ' message
 Dim strMsg1
 strMsg1 = "Error: Unknown field designation: " & _
 vFieldsArray(nFieldIndex) & vbcrlf & vbcrlf & _
 " Supported fields are as follows: " & _
 vbcrlf & vbcrlf & vbtab & g_strSupportedFields & _
 vbcrlf & _
 vbcrlf & " For a description of " & _
 "supported fields, please see the comments in " & _
 "the sample script file."

 If Trim(g_strErrors) <> "" Then
 strMsg1 = strMsg1 & vbcrlf & vbcrlf & _
 "Other errors found so far include: " & _
 g_strErrors
 End If

 MsgBox strMsg1, _
 vbOkOnly, _
 "Import Data To SecureCRT Sessions: Data File Error"
 Exit Sub

A Guide to Using VBScript in SecureCRT 107 © 2009-2010 VanDyke Software, Inc.

 End Select
 Next

 If bWriteFile Then
 'Write the session file
 If strSessionName = "" Then
 strSessionName = strHostName
 End If
 strPathForSessions = g_strConfigFolder & "\Sessions"
 'Call function to check if a folder needs to be created
 If strFolder <> "" Then
 strPathForSessions = strPathForSessions & "\" & strFolder
 End If

 If Not CreateFolderPath(strPathForSessions) Then
 Dim strMsg
 If g_nSessionsCreated > 0 Then
 strMsg = "Error: We were able to create " & _
 g_nSessionsCreated & _
 ", but encountered the following fatal error:" & _
 vbcrlf & vbcrlf
 End If

 MsgBox strMsg & "Unable to create folder: " & _
 strPathForSessions & vbcrlf & vbcrlf & vbtab & _
 g_strLastError & vbcrlf & vbcrlf & _
 "Other errors/warnings found so far include:" & _
 vbcrlf & g_strErrors, _
 vbOkOnly, _
 "Import Data To SecureCRT Sessions"
 Exit Sub
 End If

 strSessionFileName = strSessionName & ".ini"

 If g_fso.FileExists(strPathForSessions & "\" & _
 strSessionFileName) And _
 g_bOverwriteExistingSessions = False Then
 g_strErrors = g_strErrors & vbcrlf & _
 "Warning: Session already exists (and it was " & _
 "left in place) for name provided on line #" & _
 objDataFile.Line - 1 & ": """ & strLine & """"
 Else

 Dim objSessionFile
 Set objSessionFile = g_Fso.OpenTextFile(_
 strPathForSessions & "\" & _
 strSessionFileName, _
 ForWriting, _
 True)
 objSessionFile.Write "S:""Hostname""=" & strHostName & _
 vbcrlf
 objSessionFile.Write "S:""Username""=" & strUserName & _
 vbcrlf

 If strProtocol = "SSH2" Then
 If strPort = "" Then strPort = NormalizeNumber("16")
 objSessionFile.Write "D:""[SSH2] Port""=" & strPort & _
 vbcrlf
 End If
 If strProtocol = "SSH1" Then
 If strPort = "" Then strPort = NormalizeNumber("16")
 objSessionFile.Write "D:""[SSH1] Port""=" & strPort & _

A Guide to Using VBScript in SecureCRT 108 © 2009-2010 VanDyke Software, Inc.

 vbcrlf
 End If
 If strProtocol = "Telnet" Then
 If strPort = "" Then strPort = NormalizeNumber("17")
 objSessionFile.Write "D:""Port""=" & strPort & vbcrlf
 End If

 objSessionFile.Write "S:""Protocol Name""=" & _
 strProtocol & vbcrlf
 objSessionFile.Write "S:""Emulation""=" & strEmulation & _
 vbcrlf

 If strDescription <> "" Then
 objSessionFile.Write "Z:""Description""=" & _
 NormalizeNumber(nDescriptionLineCount) & vbcrlf
 objSessionFile.Write strDescription & vbcrlf
 End If

 objSessionFile.Close
 g_nSessionsCreated = g_nSessionsCreated + 1
 End If
 End If

 strEmulation = ""
 strPort = ""
 strHostName = ""
 strFolder = ""
 strUserName = ""
 strSessionName = ""
 strDescription = ""
 nDescriptionLineCount = 0
 End If

 Loop

 g_nDataLines = objDataFile.Line
 objDataFile.Close

 Dim strResults
 strResults = "Operation completed."

 If g_nSessionsCreated > 0 Then
 strResults = strResults & _
 vbcrlf & "--> Number of Sessions created: " & g_nSessionsCreated
 Else
 strResults = strResults & vbcrlf & _
 "--> No sessions were created from " & g_nDataLines & _
 " lines of data."
 End If

 If g_strErrors <> "" Then
 strErrors = g_strErrors
 ' MsgBox can only handle a small amount of data. Let's truncate the
 ' data in a semi-sensible manner, making sure that we include a full
 ' last line if the data is beyond 500 characters in length.
 If Len(g_strErrors) > 500 Then
 strErrors = Left(g_strErrors, 500)
 ' Find the last CRLF in the data and take everything to
 ' the left of it (so that we don't have a partial line of
 ' an error message displayed)
 strErrors = Left(strErrors, InstrRev(strErrors, vbcrlf))
 End If

A Guide to Using VBScript in SecureCRT 109 © 2009-2010 VanDyke Software, Inc.

 strResults = strResults & _
 vbcrlf & vbcrlf & _
 "--> Errors/warnings from this operation include:" & _
 vbcrlf & strErrors & "..."
 End If

 MsgBox strResults, _
 vbOkOnly, _
 "Import Data To SecureCRT Sessions"

End Sub

'~~
' Helper Methods and Functions
'~~

'~~
Function ValidateFieldDesignations(strFields)
 If Instr(strFieldDesignations, g_strDelimiter) = 0 Then
 Dim strErrorMsg, strDelimiterDisplay
 strErrorMsg = "Invalid header line in data file. " & _
 "Delimiter character not found: "
 If Len(g_strDelimiter) > 1 Then
 strDelimiterDisplay = g_strDelimiter
 Else
 If Asc(g_strDelimiter) < 33 or Asc(g_strDelimiter) > 126 Then
 strDelimiterDisplay = "ASCII[" & Asc(g_strDelimiter) & "]"
 Else
 strDelimiterDisplay = g_strDelimiter
 End If
 End If
 strErrorMsg = strErrorMsg & strDelimiterDisplay & vbcrlf & vbcrlf & _
 "The first line of the data file is a header line " & _
 "that must include" & vbcrlf & _
 "a '" & strDelimiterDisplay & _
 "' separated list of field keywords." & vbcrlf & _
 vbcrlf & "'hostname' and 'protocol' are required keywords." & _
 vbcrlf & vbcrlf & _
 "The remainder of the lines in the file should follow the " & _
 vbcrlf & _
 "pattern established by the header line " & _
 "(first line in the file)." & vbcrlf & "For example:" & vbcrlf & _
 g_strExampleHostsFile
 MsgBox strErrorMsg, _
 vbOkOnly, _
 "Import Data To SecureCRT Sessions"
 Exit Function
 End If

 If Instr(strFieldDesignations, "hostname") = 0 Then
 strErrorMsg = "Invalid header line in data file. " & _
 "'hostname' field is required."
 If Len(g_strDelimiter) > 1 Then
 strDelimiterDisplay = g_strDelimiter
 Else
 If Asc(g_strDelimiter) < 33 or Asc(g_strDelimiter) > 126 Then
 strDelimiterDisplay = "ASCII[" & Asc(g_strDelimiter) & "]"
 Else
 strDelimiterDisplay = g_strDelimiter
 End If
 End If

A Guide to Using VBScript in SecureCRT 110 © 2009-2010 VanDyke Software, Inc.

 MsgBox strErrorMsg & vbcrlf & _
 "The first line of the data file is a header line " & _
 "that must include" & vbcrlf & _
 "a '" & strDelimiterDisplay & _
 "' separated list of field keywords." & vbcrlf & _
 vbcrlf & "'hostname' and 'protocol' are required keywords." & _
 vbcrlf & vbcrlf & _
 "The remainder of the lines in the file should follow the " & _
 vbcrlf & _
 "pattern established by the header line " & _
 "(first line in the file)." & vbcrlf & "For example:" & vbcrlf & _
 g_strExampleHostsFile, _
 vbOkOnly, _
 "Import Data To SecureCRT Sessions"
 Exit Function
 End If

 If Instr(strFieldDesignations, "protocol") = 0 Then
 MsgBox "Invalid data file header line: " & vbcrlf & vbcrlf & _
 vbtab & strFieldDesignations & vbcrlf & _
 vbcrlf & "--> 'protocol' field is required.", _
 vbOkOnly, _
 "Import Data To SecureCRT Sessions"
 Exit Function
 End If

 ValidateFieldDesignations = True
End Function

'~~
Function ReadRegKey(strKeyPath)
 On Error Resume Next
 Err.Clear
 ReadRegKey = g_shell.RegRead(strKeyPath)
 If Err.Number <> 0 Then
 ' Registry key must not have existed.
 ' ReadRegKey will already be empty, but
 ' for the sake of clarity, we'll set it
 ' to an empty string explicitly
 ReadRegKey = ""
 End If
 On Error Goto 0
End Function

'~~
Function CreateFolderPath(strPath)
' Recursive function
 If g_fso.FolderExists(strPath) Then
 CreateFolderPath = True
 Exit Function
 End If

 ' Check to see if we've reached the drive root
 If Right(strPath, 2) = ":\" Then
 CreateFolderPath = True
 Exit Function
 End If

 ' None of the other two cases were successful, so attempt to create the
 ' folder
 On Error Resume Next
 g_fso.CreateFolder strPath
 nError = Err.Number

A Guide to Using VBScript in SecureCRT 111 © 2009-2010 VanDyke Software, Inc.

 strErr = Err.Description
 On Error Goto 0
 If nError <> 0 Then
 ' Error 76 = Path not found, meaning that the full path doesn't exist.
 ' Call ourselves recursively until all the parent folders have been
 ' created:
 If nError = 76 Then _
 CreateFolderPath(g_fso.GetParentFolderName(strPath))

 On Error Resume Next
 g_fso.CreateFolder strPath
 nError = Err.Number
 strErr = Err.Description
 On Error Goto 0

 ' If the Error is not = 76, then we have to bail since we
 ' no longer have any hope of successfully creating each folder in the
 ' tree
 If nError <> 0 Then
 g_strLastError = strErr
 Exit Function
 End If
 End If

 CreateFolderPath = True
End Function

'~~
Function NormalizeNumber(nNumber)
' Normalizes a single digit number to have a 0 in front of it
 Dim nIndex, nOffbyDigits, strResult, nDesiredDigits
 nDesiredDigits = 8
 nOffbyDigits = nDesiredDigits - Len(nNumber)

 strResult = nNumber

 For nIndex = 1 To nOffByDigits
 strResult = "0" & strResult
 Next
 NormalizeNumber = strResult
End Function

'~~
Function BrowseForFile(strTitle, strInitialDir)
 ' Since Windows XP is the only OS on which the UserAccouts.CommonDialog
 ' object is available, find out if we are using Windows XP or a different
 ' operating system (Vista and newer Windows versions are not guaranteed to
 ' have this control available, so for these operating systems, we will need
 ' to present a much simpler interface for choosing a file: an input box).
 Dim strOSName
 Set objWMIService = GetObject("winmgmts:" & _
 "{impersonationLevel=impersonate}!\\.\root\cimv2")
 Set colSettings = _
 objWMIService.ExecQuery("SELECT * FROM Win32_OperatingSystem")
 For Each objOS In colSettings
 ' Windows XP might look like this:
 ' Microsoft Windows XP Professional|C:\WINDOWS|\Device\Harddisk0\Partition1
 strOsName = Split(objOS.Name, "|")(0)
 Exit For
 Next

 If Instr(strOSName, "Windows XP") = 0 Then
 ' If not using Windows XP, we are limited in our ability to present

A Guide to Using VBScript in SecureCRT 112 © 2009-2010 VanDyke Software, Inc.

 ' an adequate file browser dialog, so we'll just pop up an InputBox
 ' asking for the path to the file.
 strFilePath = g_strHostsFile
 Do
 strFilePath = InputBox(strTitle, _
 "SecureCRT Import Script", _
 strFilePath)
 If strFilePath = "" Then Exit Function
 If g_fso.FileExists(strFilePath) Then Exit Do
 MsgBox "Path not found: " & vbcrlf & vbcrlf & vbtab & _
 strFilePath & vbcrlf & vbcrlf & _
 "Please specify a valid file path", _
 vbOkOnly, _
 "Import Data To SecureCRT Sessions"
 Loop
 BrowseForFile = strFilePath
 Else
 ' Based on information obtained from
 ' http://blogs.msdn.com/gstemp/archive/2004/02/17/74868.aspx
 ' NOTE: Will only work with Windows XP since other OS's
 ' don't have a UserAccounts.CommonDialog ActiveX
 ' object registered.
 Dim objDialog
 Set objDialog = CreateObject("UserAccounts.CommonDialog")
 'Set objDialog = CreateObject("MSComDlg.CommonDialog")
 objDialog.Filter = "CSV Files|*.csv;Text Files|*.txt;All Files|*.*"
 objDialog.FilterIndex = 1
 objDialog.InitialDir = strInitialDir
 'objDialog.InitDir = g_strMyDocs
 'objDialog.MaxFileSize = 512
 If MsgBox(strTitle, _
 vbOkCancel, _
 "Import Data To SecureCRT Sessions") <> vbok Then
 Exit Function
 End If
 'objDialog.DialogTitle = strTitle
 'objDialog.CancelError = False
 objDialog.ShowOpen

 BrowseForFile = objDialog.FileName
 End If
End Function

A Guide to Using VBScript in SecureCRT 113 © 2009-2010 VanDyke Software, Inc.

CChhaapptteerr 88:: WWoorrkkiinngg wwiitthh tthhee WWiinnddoowwss CCll iippbbooaarrdd
The ability to easily work with data from a variety of applications is often a "must have". If you store
commands, code, or configuration data within another application and need to frequently transfer
portions of this information to a remote device using SecureCRT, the Clipboard object can be used to
access text that has been copied to the Windows Clipboard.

88..11 RReettrriieevviinngg DDaattaa SSttoorreedd iinn tthhee CClliippbbooaarrdd
Retrieving data that another application has placed in the Windows Clipboard can be done within a
SecureCRT script by using the crt.Clipboard.Text property. Multiple lines of text are stored in
the Windows Clipboard with a CRLF indicator separating each line. Once you have a script
variable containing the text found in the Windows Clipboard, you can modify it as needed to meet
your needs and then send it to the remote system. For an example, see the earlier solution script in
section 5.3: Add "no" to Each Selected Line and Send to Remote.

88..22 SSttoorriinngg DDaattaa ttoo tthhee CCll iippbbooaarrdd
Sometimes you may want to transfer data from the SecureCRT terminal window to the Windows
Clipboard for use in other applications. Manually, this can be done using a variety of commonly-
known techniques:

 Select the desired text with the mouse, then choose Copy from either the Edit menu or the
right-click context menu.

 Enable the Copy on select option in SecureCRT's global options. With this option enabled,
each time text is selected within SecureCRT's terminal window, it is automatically copied to
the Windows Clipboard.

 Select the desired text with the mouse, then use SecureCRT's Ctrl+Shift+C built-in
shortcut key for copying data to the Windows Clipboard. Alternatively, use the
Ctrl+Insert to copy.

Each of these manual methods of copying text from SecureCRT to the Windows Clipboard have
their pros and cons. But what if you want to extract text from a specific location on the screen from
within a script, and place the information on the clipboard? You can expand on the example earlier
by placing the text found in a specific location on the screen directly within the Windows Clipboard.
For example:

' Extract data displayed on row 2, between columns 1 and 2
nProcesses = crt.Screen.Get(2,1,2,2)

' Extract data displayed on row 5, between columns 36 and 41
nFreeMem = crt.Screen.Get(5,36,5,41)

strData = "Processes:" & vbtab & nProcesses & vbcrlf & _
 "Free Memory:" & vbtab & nFreeMem

' Place the data in the Windows Clipboard for use in another application:
crt.Clipboard.Text = strData

 SSoolluutt iioonn:: AAuuttoo--SSaavvee CCoommmmaanndd RReessuullttss ttoo tthhee CClliippbbooaarrdd
What if you wanted to automatically have the results of each command placed in the Windows
Clipboard, ready to paste into another application without needing to select the text? Here's an

A Guide to Using VBScript in SecureCRT 114 © 2009-2010 VanDyke Software, Inc.

example script solution that runs in the background, placing the results of each remote
command within the Windows Clipboard:

' StoreResultsOfLastCommandInWindowsClipboard.vbs
'
' Description:
' - Determines what the shell prompt is.
' - Enters a loop, continuously setting the Windows Clipboard to the
' text of each command entered on the remote system.
' - To stop the script, choose "Cancel" from SecureCRT's main Script menu.
'
' Try not to miss any data
crt.Screen.Synchronous = True
' Also, don't capture escape sequences
crt.Screen.IgnoreEscape = True

Sub Main()

 If Not crt.Session.Connected Then
 crt.Dialog.MessageBox _
 "This script requires an active connection to a remote machine."
 Exit Sub
 End If

 ' Determine what the shell prompt is...
 If crt.Dialog.MessageBox(_
 "Trying to determine what your shell prompt is..." & vbcrlf & _
 vbcrlf & _
 "Please press the ""OK"" button. Then press the Enter " & vbcrlf & _
 "key while at the shell prompt.", _
 "SecureCRT Script: Determine Shell Prompt", _
 vbOkCancel) <> vbOk Then Exit Sub

 crt.Screen.WaitForString vbcr
 Do
 ' Attempt to detect the command prompt heuristically...
 Do
 bCursorMoved = crt.Screen.WaitForCursor(1)
 Loop Until bCursorMoved = False
 ' Once the cursor has stopped moving for about a second, we'll
 ' assume it's safe to start interacting with the remote system.

 ' Get the shell prompt so that we can know what to look for when
 ' determining if the command is completed. Won't work if the prompt
 ' is dynamic (e.g., changes according to current working folder, etc.)
 nRow = crt.Screen.CurrentRow
 strPrompt = crt.screen.Get(nRow, _
 0, _
 nRow, _
 crt.Screen.CurrentColumn - 1)

 ' Loop until we actually see a line of text appear (the
 ' timeout for WaitForCursor above might not be enough
 ' for slower-responding hosts.
 strPrompt = Trim(strPrompt)
 If strPrompt <> "" Then Exit Do
 Loop

 ' Determine what the shell prompt is...
 If crt.Dialog.MessageBox(_
 "All set!" & vbcrlf & vbcrlf & _
 "Your shell prompt was detected as being: """ & strPrompt & """" & _
 vbcrlf & _

A Guide to Using VBScript in SecureCRT 115 © 2009-2010 VanDyke Software, Inc.

 vbcrlf & _
 "While this script continues to run, the results of each command " & _
 "you run will be stored" & vbcrlf & _
 "in the Windows Clipboard." & vbcrlf & _
 vbcrlf & _
 "Note, however, that if your prompt includes your current " & _
 "working directory and is" & vbcrlf & _
 "dynamically updated, the change to your prompt will cause " & _
 "this script to capture data" & vbcrlf & _
 "up until you return to the working directory you were in when " & _
 "the script was initially" & vbcrlf & _
 "launched.", _
 "SecureCRT Script: Clipboard Command Result Store Activated", _
 vbOkCancel) <> vbOk Then Exit Sub

 ' Now that we know what the prompt is, we'll loop waiting for the prompt
 ' to appear.
 Do
 ' First, wait for a command to be issued (if you want the command
 ' you ran to be included above the results, comment out the
 ' following line of code).
 crt.Screen.WaitForString vbcr

 ' Now that we know a command has been sent to the remote, let's
 ' use ReadString to capture everything that we receive from the
 ' remote machine up until we see the prompt.
 strData = crt.Screen.ReadString(strPrompt)

 ' Some devices like Cisco PIX return lines terminated by LFCR,
 ' which is backwards from what Windows really needs in the
 ' clipboard. We'll look for these and simply replace them with
 ' the correct CRLF sequence:
 strData = Replace(strData, vbcr, "")
 strData = Replace(strData, vblf, vbcrlf)

 ' Now store the rectified data into the Windows Clipboard...
 crt.Clipboard.Text = strData
 Loop

End Sub

88..33 CChhaannggiinngg PPaassttee ""SSppeeeedd""
If you are a network administrator responsible for configuration of routers or switches, you might
sometimes find you need to "slow" down pasting so that it doesn't overwhelm the remote device to
which you are connected – especially if you're pasting a larger amount of text.

 SSoolluutt iioonn:: ““SSllooww PPaassttee”” ((LLiinnee DDeellaayy))
One way to slow down the rate at which text is sent to a remote system is to introduce a delay
after each line has been sent. Some SecureCRT users reading this would be right in thinking,
"This sounds familiar…" because SecureCRT sports a session option named "Line send delay"
that is intended specifically for this purpose (see the Terminal / Emulation / Advanced
category of the Session Options dialog). Although this option is a welcome benefit when
manually pasting large amounts of text, the Line send delay and Character send delay
options do not apply when sending data via crt.Screen.Send within a SecureCRT script.
You'll likely need to experiment with the amount of time required for "sleeping" between each
line to match the needs of the remote device. Try this script out by defining a button to run a
script file containing the following code:

A Guide to Using VBScript in SecureCRT 116 © 2009-2010 VanDyke Software, Inc.

' SlowPaste-LineDelay.vbs
'
' Description:
' Demonstrates how to send each line within the Windows Clipboard
' to a remote host after introducing a delay after each line
' is sent. This is one approach to prevent overwhelming a remote
' host that cannot accept data as fast as SecureCRT normally sends
' it.

' Define the amount of time (milliseconds) that should be introduced as
' a delay between each line being sent to the remote host. You'll
' probably want to experiment with different values for g_nDelay to find
' out which one provides the best balance between performance and over-
' whelming the remote host.
g_nDelay = 300

Sub Main()
 ' If there isn't an active connection, there's no point in continuing
 ' since we can't send data.
 If Not crt.Session.Connected Then
 crt.Dialog.MessageBox "Sending data requires an active connection."
 Exit Sub
 End If

 ' If there isn't anything in the Windows Clipboard, it doesn't make any
 ' sense to continue with the script. Note that we're checking for
 ' vbcrlf here, since an empty clipboard will only contain a trailing
 ' CRLF sequence.
 If Trim(crt.Clipboard.Text) = vbcrlf Then
 crt.Dialog.MessageBox "No text found in the Windows Clipboard."
 Exit Sub
 End If

 ' Multiple lines in the Windows Clipboard are stored with a CRLF separator.
 ' Break up lines into an array (each line as an element within the array):
 vLines = Split(crt.Clipboard.Text, vbcrlf)

 ' Enter a loop, sending a line, and then sleeping for g_nDelay milliseconds
 ' after each line is sent.

 For Each strLine In vLines
 ' The vbcr is needed to simulate pressing the Enter key since we
 ' lost the line ending vbcr during the above Split operation.
 crt.Screen.Send strLine & vbcr
 crt.Sleep g_nDelay
 Next

 ' Inform that the data has all been sent.
 crt.Dialog.MessageBox _
 "All data in the Windows Clipboard has been sent to the remote."
End Sub

 SSoolluutt iioonn:: ““SSllooww PPaassttee”” ((EEcchhoo DDeellaayy))
Another way to slow down the rate at which data is sent to the remote is to introduce a
WaitForString() call right after sending a line, waiting for the remote to echo the line back
(indication that the remote has received the data, and is ready for the next line). Depending on
the latency of the connection between SecureCRT and the remote device, this may be slower
than desired since it takes time for the remote to echo data back to SecureCRT. A modification

A Guide to Using VBScript in SecureCRT 117 © 2009-2010 VanDyke Software, Inc.

could be to only wait for each third line or fifth line to appear from the remote. Give this example
a spin by defining a button to run a script file containing the following code:

' SlowPaste-EchoDelay.vbs
'
' Description:
' Demonstrates how to send each line within the Windows Clipboard and wait
' for it to be echoed back by the remote host before the next line is sent.
' This is one approach to prevent overwhelming a remote host that cannot
' accept data as fast as SecureCRT normally sends it by making sure the
' remote machine has received each line before moving on to the next line.

Sub Main()
 ' If there isn't an active connection, there's no point in continuing
 ' since we can't send data.
 If Not crt.Session.Connected Then
 crt.Dialog.MessageBox "Sending data requires an active connection."
 Exit Sub
 End If

 ' If there isn't anything in the Windows Clipboard, it doesn't make any
 ' sense to continue with the script. Note that we're checking for
 ' vbcrlf here, since an empty clipboard will only contain a trailing
 ' CRLF sequence.
 If Trim(crt.Clipboard.Text) = vbcrlf Then
 crt.Dialog.MessageBox "No text found in the Windows Clipboard."
 Exit Sub
 End If

 ' Multiple lines in the Windows Clipboard are stored with a CRLF separator.
 ' Break up lines into an array (each line as an element within the array).
 vLines = Split(crt.Clipboard.Text, vbcrlf)

 ' Enter a loop, sending a line, and then waiting for the line to be
 ' echoed back to us from the remote, before the next line is sent.
 For Each strLine In vLines
 ' The vbcr is needed to simulate pressing the Enter key since we
 ' lost the line ending vbcr during the above Split operation.
 crt.Screen.Send strLine & vbcr

 ' Now, wait for the remote to echo what we just sent
 crt.Screen.WaitForString strLine
 Next

 ' Inform that the data has all been sent.
 crt.Dialog.MessageBox _
 "All data in the Windows Clipboard has been sent to the remote."
End Sub

 SSoolluutt iioonn:: VVaarryy PPaassttee SSppeeeedd BBaasseedd oonn CClliippbbooaarrdd LLeennggtthh
Another approach would be to send the data to the remote without delay if the amount of text
detected in the Windows Clipboard is below a certain threshold, say, 500 characters. The
following example solution demonstrates how to detect the number of characters currently
stored in the Windows Clipboard before deciding whether or not to invoke a delayed send.

' DelayPasteIfClipboardLengthExceedsThreshold.vbs
'
' Description:
' Demonstrates how to send each line within the Windows Clipboard
' to a remote host after introducing a delay after each line

A Guide to Using VBScript in SecureCRT 118 © 2009-2010 VanDyke Software, Inc.

' is sent -- only if the number of characters in the clipboard exceeds
' a certain length. This is another approach to prevent overwhelming
' a remote host that cannot accept data as fast as SecureCRT normally
' sends it.
'
' Define the threshold: the length of the clipboard (number of characters)
' that, if exceeded, will cause the paste operation to be slowed down.
g_nClipboardLengthThreshold = 500

' Define the amount of time (milliseconds) that should be introduced as
' a delay between each line being sent to the remote host. You'll
' probably want to experiment with different values for g_nDelay to find
' out which one provides the best balance between performance and over-
' whelming the remote host:
g_nDelay = 300

Sub Main()
 ' If there isn't an active connection, there's no point in continuing
 ' since we can't send data.
 If Not crt.Session.Connected Then
 crt.Dialog.MessageBox "Sending data requires an active connection."
 Exit Sub
 End If

 ' If there isn't anything in the Windows Clipboard, it doesn't make any
 ' sense to continue with the script. Note that we're checking for
 ' vbcrlf here, since an empty clipboard will only contain a trailing
 ' CRLF sequence.
 If Trim(crt.Clipboard.Text) = vbcrlf Then
 crt.Dialog.MessageBox "No text found in the Windows Clipboard."
 Exit Sub
 End If

 ' Only delay if the length of the clipboard is greater than the established
 ' threshold
 If Len(crt.Clipboard.Text) > g_nClipboardLengthThreshold Then
 ' Multiple lines in the Windows Clipboard are stored with a CRLF separator.
 ' Break up lines into an array (each line as an element within the array):
 vLines = Split(crt.Clipboard.Text, vbcrlf)

 ' Enter a loop, sending a line, and then sleeping for g_nDelay milliseconds
 ' after each line is sent.

 For Each strLine In vLines
 ' The vbcr is needed to simulate pressing the Enter key since we
 ' lost the line ending vbcr during the above Split operation.
 crt.Screen.Send strLine & vbcr
 crt.Sleep g_nDelay
 Next

 ' Inform that the data has all been sent.
 crt.Dialog.MessageBox _
 "All data in the Windows Clipboard has been sent to the remote."
 Else
 ' The amount of text in the clipboard is small enough to send without a delay.
 crt.Screen.SendSpecial "MENU_PASTE"
 End If
End Sub

88..44 SSeetttt iinngg tthhee CCll iippbbooaarrdd TTeexxtt FFoorrmmaatt ((EEnnccooddiinngg))
If you copy text from a Microsoft Office application or from a web page, you may notice that certain
characters are not displayed correctly when the Clipboard contents are pasted to the remote

A Guide to Using VBScript in SecureCRT 119 © 2009-2010 VanDyke Software, Inc.

machine via SecureCRT. This problem is sometimes caused by a difference between the text
encoding in the application from which it was copied and the encoding format accepted by the
remote system. The remote system may recognize a hyphen, but not know what an em dash or an
en dash is. It might recognize a standard quote character (ASCII 34 decimal), but complain about
being sent "smart quotes". SecureCRT provides a private clipboard format named “VDS_TEXT”
that will automatically convert upper ASCII smart quotes, em dashes, and en dashes to their lower
ASCII equivalents in order to facilitate compatibility with remote applications/shells that do not know
about these upper ASCII characters.

You might also find that you need to copy Unicode text containing foreign language characters,
which need to be preserved when copying from or pasting to a capable remote system.

If you've changed the clipboard format within a SecureCRT script for a specific task and want to
restore it to the default format (defined in SecureCRT's Global.ini file as the value of the
Clipboard Data Format .ini file only option), you can reset the clipboard format by using the
"DEFAULT" format constant. As an example of how changing the clipboard format can affect how
certain characters appear after being copied and pasted, copy the following text to the Windows
Clipboard:

These are “Smart Quotes”
ls –l *.txt
vshelld –restart

Then, map a button to run the following script code:

' ChangeClipboardFormat.vbs
'
' Description:
' Demonstrates how to temporarily set the clipboard format to match the
' type of text that is copied into the Windows Clipboard.

crt.Dialog.MessageBox _
 "Clipboard viewed in DEFAULT format (as defined in Global.ini): " & _
 vbcrlf & vbcrlf & _
 crt.Clipboard.Text

crt.Clipboard.Format = crt.Clipboard.VDS_TEXT
crt.Dialog.MessageBox _
 "Clipboard viewed in VDS_TEXT format:" & _
 vbcrlf & vbcrlf & _
 crt.Clipboard.Text

crt.Clipboard.Format = crt.Clipboard.CF_UNICODETEXT
crt.Dialog.MessageBox _
 "Clipboard viewed in CF_UNICODETEXT format:" & _
 vbcrlf & vbcrlf & _
 crt.Clipboard.Text

crt.Clipboard.Format = nFormat
crt.Dialog.MessageBox _
 "Now, Back to DEFAULT format: " & crt.Clipboard.Format & _
 vbcrlf & vbcrlf & _
 crt.Clipboard.Text

A Guide to Using VBScript in SecureCRT 120 © 2009-2010 VanDyke Software, Inc.

If you have a default SecureCRT configuration, you’ll see the following sequence of dialogs:

, ,

,
Sequence of Dialogs that Appear When Running ChangeClipboardFormat.vbs

You can see by the difference in appearance of the quotation marks and the dashes in the graphics
above, that the VDS_TEXT format causes the text to be treated as lower 7-bit ASCII characters. Also,
since the CF_UNICODETEXT format appears identical to the DEFAULT format, you can see that
CF_UNICODETEXT is the default clipboard format in SecureCRT.

